دسترسی نامحدود
برای کاربرانی که ثبت نام کرده اند
برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید
در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید
برای کاربرانی که ثبت نام کرده اند
درصورت عدم همخوانی توضیحات با کتاب
از ساعت 7 صبح تا 10 شب
ویرایش:
نویسندگان: Vladimir G. Berkovich
سری: Annals of Mathematics Studies 162
ISBN (شابک) : 0691128626, 9780691128627
ناشر: Princeton University Press
سال نشر: 2006
تعداد صفحات: 159
زبان: English
فرمت فایل : PDF (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود)
حجم فایل: 2 مگابایت
در صورت تبدیل فایل کتاب Integration of One-forms on P-adic Analytic Spaces به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.
توجه داشته باشید کتاب ادغام فرم های تک در فضاهای تحلیلی P-adic نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.
در میان بسیاری از تفاوت های بین اشیاء کلاسیک و p-adic، موارد مربوط به معادلات دیفرانسیل جایگاه ویژه ای را به خود اختصاص می دهند. به عنوان مثال، یک شکل تحلیلی بسته p-adic که در یک دامنه ساده متصل تعریف شده است، لزوماً دارای یک ابتدایی در کلاس توابع تحلیلی نیست. در اوایل دهه 1980، رابرت کلمن راهی برای ساختن اولیههای یک شکل تحلیلی بر روی منحنیهای تحلیلی صاف p-adic در کلاس بزرگتری از توابع کشف کرد. از آن زمان تاکنون، تلاشهای متعددی برای تعمیم ایدههای او برای هموارسازی فضاهای تحلیلی p-adic با ابعاد بالاتر انجام شده است، اما فضاهای در نظر گرفته شده همواره با انواع جبری مرتبط بودهاند. هدف این کتاب نشان دادن این است که هر فضای تحلیلی p-adic هموار با آن ارائه میشود. مجموعه ای از توابع که شامل تمام توابع تحلیلی می شود و یک ویژگی منحصر به فرد را برآورده می کند. همچنین حاوی ضرایب ابتدایی محلی از تمام فرمهای بسته با ضرایبی در شیف است که در موردی که کلمن در نظر گرفته، با ضرایبی که او ساخته است مطابقت دارد. در نتیجه، یک انتقال موازی از راهحلهای محلی یک معادله دیفرانسیل تک توان و یک انتگرال از یک شکل بسته در امتداد یک مسیر ایجاد میکند، به طوری که هر دو به طور غیر اساسی به کلاس هموتوپی مسیر وابسته هستند. هم نتایج قبلی نویسنده در مورد خواص هندسی فضاهای تحلیلی صاف p-adic و هم تئوری ایزوکریستالها در این کتاب که هدف آن دانشجویان فارغالتحصیل و ریاضیدانانی است که در زمینههای هندسه تحلیلی غیر ارشمیدسی، تئوری اعداد و کار میکنند، بیشتر توسعه داده شده است. هندسه جبری
Among the many differences between classical and p-adic objects, those related to differential equations occupy a special place. For example, a closed p-adic analytic one-form defined on a simply-connected domain does not necessarily have a primitive in the class of analytic functions. In the early 1980s, Robert Coleman discovered a way to construct primitives of analytic one-forms on certain smooth p-adic analytic curves in a bigger class of functions. Since then, there have been several attempts to generalize his ideas to smooth p-adic analytic spaces of higher dimension, but the spaces considered were invariably associated with algebraic varieties.This book aims to show that every smooth p-adic analytic space is provided with a sheaf of functions that includes all analytic ones and satisfies a uniqueness property. It also contains local primitives of all closed one-forms with coefficients in the sheaf that, in the case considered by Coleman, coincide with those he constructed. In consequence, one constructs a parallel transport of local solutions of a unipotent differential equation and an integral of a closed one-form along a path so that both depend nontrivially on the homotopy class of the path. Both the author's previous results on geometric properties of smooth p-adic analytic spaces and the theory of isocrystals are further developed in this book, which is aimed at graduate students and mathematicians working in the areas of non-Archimedean analytic geometry, number theory, and algebraic geometry.