دسترسی نامحدود
برای کاربرانی که ثبت نام کرده اند
برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید
در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید
برای کاربرانی که ثبت نام کرده اند
درصورت عدم همخوانی توضیحات با کتاب
از ساعت 7 صبح تا 10 شب
ویرایش: نویسندگان: R. Sujatha, S. L. Aarthy, and R. Vettriselvan سری: Green Engineering and Technology ISBN (شابک) : 0367466635, 9780367466633 ناشر: CRC Press سال نشر: 2021 تعداد صفحات: 217 زبان: English فرمت فایل : PDF (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود) حجم فایل: 16 مگابایت
در صورت تبدیل فایل کتاب Integrating Deep Learning Algorithms to Overcome Challenges in Big Data Analytics به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.
توجه داشته باشید کتاب ادغام الگوریتم های یادگیری عمیق برای غلبه بر چالش ها در تجزیه و تحلیل داده های بزرگ نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.
علم داده حول دو غول می چرخد: تجزیه و تحلیل داده های بزرگ و یادگیری عمیق. به دلیل سرعت گسترش داده ها، رسیدگی و بازیابی اطلاعات مفید چالش برانگیز است. این کتاب فنآوریها و ابزارهایی را برای سادهسازی و سادهسازی شکلگیری دادههای بزرگ و همچنین سیستمهای یادگیری عمیق ارائه میکند.
این کتاب به این موضوع میپردازد که چگونه دادههای بزرگ و یادگیری عمیق پتانسیل افزایش قابلتوجه درک دادهها و تصمیمگیری را دارند. همچنین کاربردهای متعددی را در مراقبت های بهداشتی، آموزشی، ارتباطات، رسانه ها و سرگرمی پوشش می دهد. یکپارچهسازی الگوریتمهای یادگیری عمیق برای غلبه بر چالشها در تجزیه و تحلیل دادههای بزرگ پلتفرمهای نوآورانهای را برای ادغام دادههای بزرگ و یادگیری عمیق ارائه میدهد و مسائل مربوط به ذخیرهسازی کافی داده، نمایهسازی معنایی، برچسبگذاری دادهها و بازیابی سریع اطلاعات را ارائه میدهد.
ویژگی ها
< /p>
این کتاب برای متخصصان صنعت، دانشگاهیان، پژوهشگران، مدلسازان سیستم و کارشناسان شبیهسازی هدف قرار گرفته است.
Data science revolves around two giants: Big Data analytics and Deep Learning. It is becoming challenging to handle and retrieve useful information due to how fast data is expanding. This book presents the technologies and tools to simplify and streamline the formation of Big Data as well as Deep Learning systems.
This book discusses how Big Data and Deep Learning hold the potential to significantly increase data understanding and decision-making. It also covers numerous applications in healthcare, education, communication, media, and entertainment. Integrating Deep Learning Algorithms to Overcome Challenges in Big Data Analytics offers innovative platforms for integrating Big Data and Deep Learning and presents issues related to adequate data storage, semantic indexing, data tagging, and fast information retrieval.
FEATURES
This book is aimed at industry professionals, academics, research scholars, system modelers, and simulation experts.
Cover Half Title Series Page Title Page Copyright Page Contents Preface Editors Contributors 1. A Study on Big Data and Artificial Intelligence Techniques in Agricultural Sector 1.1 Introduction 1.1.1 The Life Cycle of Agriculture 1.2 The Role of Big Data in the Agricultural Sector 1.2.1 Overall Characteristics of Big Data Applicable to the Agricultural Sector 1.2.2 The Processing Steps of Big Data in Agriculture 1.3 Some Cases of the Use of Big Data on Farm 1.3.1 To Evade Food Scarcity of the Growing Population 1.3.2 Managing Pesticides and Farm Equipment 1.3.3 Supply Chain Management 1.3.4 Yield Prediction and Risk Management 1.4 Challenges Faced by Farmers versus AI Solutions 1.4.1 Forecasting Weather Conditions 1.4.2 Decision-Making 1.4.3 Diagnosing Defects in Soil and Weed Detection 1.4.4 Nutrition Treatment 1.5 AI Techniques in Agricultural Sector 1.5.1 Machine Learning 1.5.1.1 Supervised Learning 1.5.1.2 Unsupervised Learning 1.5.2 Neural Networks 1.5.2.1 Working Process of Neural Network 1.5.3 The Expert System 1.5.3.1 Components of the Expert System 1.5.3.2 The Working Process of the Expert System 1.5.4 The Decision Tree 1.5.4.1 Working Steps of the Decision Tree 1.5.5 Support Vector Machine 1.5.6 Random Forest 1.5.6.1 Working Steps of an RF 1.6 Application of AI in Agriculture 1.6.1 Image Recognition 1.6.2 Disease Detection 1.6.3 Field Management 1.6.4 Driverless Tractor 1.6.5 Weather Forecasting 1.6.6 AI Agricultural Bots 1.6.7 Reduction of Pesticide Usage 1.7 Advantages of Using AI in Agriculture 1.8 Conclusion References 2. Deep Learning Models for Object Detection in Self-Driven Cars 2.1 Introduction 2.2 Related Work 2.3 Self-Directed Cars 2.3.1 Computer Vision 2.3.2 Fusion of Sensor Data 2.3.3 Localization 2.3.4 Path Planning 2.3.5 Control 2.4 Object Detection 2.5 Region-based Convolutional Neural Network (R-CNN) 2.6 Fast Region-based Convolutional Neural Network (Fast R-CNN) 2.7 Faster Region-based Convolutional Neural Network (Faster R-CNN) 2.8 Mask Region-based Convolution Neural Network (Mask R-CNN) 2.9 YOLO 2.10 YOLO v1 for Self-Driven Cars 2.11 YOLO v2 for Self-Driven Cars 2.12 YOLO v3 for Self-Driven Cars 2.13 Performance Analysis 2.14 Conclusion References 3. Deep Learning for Analyzing the Data on Object Detection and Recognition 3.1 Introduction 3.1.1 Basic Concept of Deep Learning 3.1.2 Brief History of Deep Learning 3.1.3 Advantages of Deep Learning with Traditional Learning 3.1.4 Convolutional Neural Networks (CNNs) 3.1.5 Object Detection and Recognition 3.2 Deep Learning Object Detection Models 3.2.1 Two-Stage Methodology for Deep Object Detection 3.2.1.1 Region-based Convolutional Neural Network (R-CNN) 3.2.1.2 Fast Region-based Convolutional Neural Network (Fast R-CNN) 3.2.1.3 Faster Region-based Convolutional Neural Network (Faster R-CNN) 3.2.1.4 Mask R-CNN 3.2.2 One-Stage Methodology for Deep Object Detection 3.2.2.1 You Only Look Once - One-Stage Method 3.2.2.2 Single-Shot Multi-Box Detector (SSD) 3.2.3 The Benchmark Deep Learning\'s Object Detection Models 3.3 General Datasets for Object Detection 3.3.1 Microsoft Common Objects in Context (MS-COCO) 3.3.2 Pattern Analysis, Statistical Modeling, and Computational Learning (PASCAL) - Visual Object Classes (VOC) 3.4 Conclusion and Future Directions References 4. Emerging Applications of Deep Learning 4.1 Introduction 4.1.1 Machine Learning 4.1.1.1 Machine Learning Types 4.1.1.2 How Machine Learning Overseen Works 4.2 Summary of Deep Learning 4.2.1 Deep Learning Uses 4.2.2 The Deep Learning Development 4.2.3 Deep Learning Advantages 4.3 Deep Learning Applications in Recent Fields 4.3.1 Fraud Detection 4.3.2 Autonomous Cars 4.3.3 GoogleNet Deep Learning Algorithm for Autonomous Driving Using GoogleNet Driving 4.3.4 Deep Learning to Self-Driving Car: Chances and Challenges 4.3.5 Deep Learning Grokking 4.3.6 Enabling Immersive Supercomputing at JSC, Lessons Learned 4.3.7 Wide-Range Deep Learning on Big Scale 4.3.8 Fast CPU Implementation 4.3.9 Large-Scale Implementations Distributed 4.3.10 Speech Recognition 4.3.11 Learning Hand-Eye Coordination for Robotic Grasping with Deep Learning and Large-Scale Data Collection 4.3.12 Deep Learning for Computational Chemistry 4.3.13 Deep Learning in Radiology 4.4 Conclusion and Future Directions References 5. Emerging Trend and Research Issues in Deep Learning with Cloud Computing 5.1 Introduction 5.1.1 Cloud Computing Architecture 5.2 Deep Learning 5.2.1 Supervised and Unsupervised Learning 5.2.2 Deep Learning Techniques Adopted in the Emergent Cloud Environment 5.3 Convolutional Neural Network 5.4 Deep Reinforcement Learning 5.5 Recurrent Neural Network 5.6 Deep Learning Applications in the Emerging Cloud Computing Environment 5.7 Challenges and New Perspective for Future Direction 5.8 Conclusion References 6. An Investigation of Deep Learning 6.1 Introduction 6.1.1 Artificial Neural Network 6.1.2 Convolution Neural Networks 6.1.3 Neocognitron 6.1.4 Back Propagation 6.1.5 Backpropagation Neural Network Architecture 6.2 History of Machine Learning 6.2.1 Game Checkers in Machine Learning 6.2.2 Algorithm for Nearest Neighbors (k-NN) 6.2.3 Forwarding Information between Layers 6.2.4 Artificial Neural Network (ANN) 6.2.5 Machine Learning versus Artificial Intelligence 6.2.6 Algorithm for Boosting Machine Learning 6.2.7 Facial Model Identification 6.2.8 How Machine Learning Happened Today? 6.3 Deep Learning 6.4 Conclusion References 7. A Study and Comparative Analysis of Various Use Cases of NLP Using Sequential Transfer Learning Techniques 7.1 Introduction 7.2 Literature Review 7.3 Empirical Study 7.4 Sequential Transfer Learning Model for Sentiment Analysis 7.4.1 ULMFIT 7.4.2 RoBERTa 7.4.3 XLNet 7.4.4 DistilBERT 7.4.5 Methodology 7.4.6 Results and Discussion 7.4.6.1 Experiment Set 1 on IMDB 7.4.6.2 Experiment Set 2 YELP Review Dataset 7.5 Sequential Transfer Learning Model for NER 7.5.1 Results and Discussion 7.6 Conclusion 7.7 Conflict of Interest Acknowledgment References 8. Deep Learning for Medical Dataset Classification Based on Convolutional Neural Networks 8.1 Introduction 8.2 Deep Learning Architecture and Its Neural Networks 8.3 CNN-Based Medical Image Classification 8.3.1 Deep Features and Fusion with Multi-Layer Perceptron 8.3.2 ECG Arrhythmia Classifications 8.3.3 Classification of Tuberculosis-Related Chest X-Ray 8.3.4 Clinical Image Classification of Infectious Keratitis 8.3.5 Diabetic Retinopathy 8.3.6 Tumor Stage Classification of Pulmonary Lung Nodules 8.3.7 Classification of Alzheimer\'s Disease 8.3.8 Classification of Primary Bone Tumors on Radiographs 8.3.9 Classification of Brain Tumors 8.3.10 Classification Methods for Diagnosis of Skin Cancer 8.3.11 COVID-19 Detection in CT Images 8.3.12 MRI Harmonization and Confound Removal Using Neuro-Imaging Datasets 8.3.13 Deep Learning in Spatiotemporal Cardiac Imaging 8.3.14 Liver Tumor Classification Using Deep Learning model 8.4 Conclusion References 9. Deep Learning in Medical Image Classification 9.1 Introduction 9.2 Medical Image Classification 9.2.1 What Is Medical Imaging? 9.2.2 Why Medical Imaging So Important? 9.2.3 Who Does It and for Whom? 9.2.4 How It Is Done? 9.2.5 What Is Medical Image Classification? 9.2.6 Why Deep Learning over Conventional Methods 9.3 Overview of Deep Learning 9.3.1 Fundamentals of Deep Learning 9.3.1.1 Aspects of Deep Learning 9.3.1.2 Drivers of Deep Learning 9.3.2 Deep Learning Architectures 9.3.2.1 Deep Neural Networks (DNN) 9.3.2.2 Convolutional Neural Networks 9.3.2.3 Recurrent Neural Network (RNN) 9.3.2.4 Deep Boltzmann Network (Also Called Restricted Boltzman Machine) 9.3.2.5 Deep Belief Networks (DBNs) 9.3.2.6 Deep AutoEncoder (DAE) 9.4 Deep Learning for Medical Image Classification [Literature Review] 9.4.1 Deep Learning for Diabetic Retinopathy 9.4.2 Deep Learning for the Detection of Histological andMicroscopial Elements 9.4.3 Deep Learning for Gastrointestinal Disease Detection 9.4.4 Deep Learning for Lung Disease 9.4.5 Deep Learning for Cardiac Disease Classification 9.4.6 Deep Learning for Tumor Detection 9.4.7 Deep Learning for Alzheimer\'s and Parkinson\'s Detection 9.5 Current Progress and Limitations of Deep Learning 9.5.1 Limited Availability of Datasets 9.5.2 Privacy and Legal Issues 9.5.3 Data and Model Standardization 9.6 Conclusion References 10. A Comparative Review of the Role of Deep Learning in Medical Image Processing 10.1 Introduction 10.1.1 Challenges of Medical Image Processing 10.2 Deep Learning 10.2.1 Important Deep Learning Models 10.2.1.1 Supervised Learning Models 10.2.1.1.1 Convolutional Neural Networks (CNNs) 10.2.1.1.2 Recurrent Neural Networks 10.2.1.1.3 Transfer Learning 10.2.1.2 Unsupervised Learning 10.2.1.2.1 Autoencoders 10.2.1.2.2 Restricted Boltzmann Machines and Deep Belief Networks 10.2.1.2.3 Generative Adversarial Networks 10.3 Medical Image Processing 10.3.1 Cardiovascular Diseases 10.3.2 Arrhythmia 10.3.3 Coronary Artery Disease 10.4 Parkinson\'s and Alzheimer\'s Diseases 10.4.1 Eye Diseases 10.4.2 Breast Cancer 10.4.3 Gastrointestinal Diseases 10.4.4 Skin Cancer 10.4.5 Liver Diseases 10.4.6 Lung Cancer 10.5 Conclusion References Index