دسترسی نامحدود
برای کاربرانی که ثبت نام کرده اند
برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید
در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید
برای کاربرانی که ثبت نام کرده اند
درصورت عدم همخوانی توضیحات با کتاب
از ساعت 7 صبح تا 10 شب
ویرایش: [1 ed.]
نویسندگان: Michael Schaub. Marc Kéry
سری:
ISBN (شابک) : 9780323908108
ناشر: Academic Press
سال نشر: 2022
تعداد صفحات: 640
زبان: English
فرمت فایل : EPUB (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود)
حجم فایل: 300 Mb
در صورت تبدیل فایل کتاب Integrated Population Models Theory and Ecological Applications with R and JAGS به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.
توجه داشته باشید کتاب تئوری مدل های جمعیتی یکپارچه و کاربردهای اکولوژیکی با R و JAGS نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.
مدلهای جمعیتی یکپارچه: نظریه و کاربردهای اکولوژیکی با R و JAGS اولین کتاب در مورد مدلهای جمعیتی یکپارچه است که چارچوبی قدرتمند برای ترکیب مجموعههای دادههای متعدد از جمعیت و سطوح فردی برای تخمین پارامترهای جمعیتشناختی، اندازه و روند جمعیت را تشکیل میدهد. این مدلها محرکهای پویایی جمعیت را شناسایی کرده و ترکیب و مسیر جمعیت را پیشبینی میکنند. این کتاب که توسط دو بومشناس جمعیت با تخصص در مدلسازی جمعیت یکپارچه نوشته شده است، ترکیبی جامع از نظریه مربوط به مدلهای جمعیتی یکپارچه با مروری کلی از کاربردهای عملی، با استفاده از روشهای بیزی با استفاده از مطالعات موردی ارائه میکند. این کتاب حاوی کد کاملاً مستند و کامل برای جا دادن همه مدلها در نرمافزار رایگان R و JAGS است. همچنین شامل تمام کدهای مورد نیاز برای تجزیه و تحلیل قبل و بعد از برازش مدل است. مدلهای جمعیت یکپارچه یک مرجع ارزشمند برای محققان و متخصصان درگیر در تجزیه و تحلیل جمعیت و برای دانشجویان مقطع تحصیلات تکمیلی در بومشناسی، زیستشناسی حفاظت، مدیریت حیات وحش و زمینههای مرتبط است. این متن برای دوره های تحصیلات تکمیلی پیشرفته و خودآموز ایده آل است.
Integrated Population Models: Theory and Ecological Applications with R and JAGS is the first book on integrated population models, which constitute a powerful framework for combining multiple data sets from the population and the individual levels to estimate demographic parameters, and population size and trends. These models identify drivers of population dynamics and forecast the composition and trajectory of a population. Written by two population ecologists with expertise on integrated population modeling, this book provides a comprehensive synthesis of the relevant theory of integrated population models with an extensive overview of practical applications, using Bayesian methods by means of case studies. The book contains fully-documented, complete code for fitting all models in the free software, R and JAGS. It also includes all required code for pre- and post-model-fitting analysis. Integrated Population Models is an invaluable reference for researchers and practitioners involved in population analysis, and for graduate-level students in ecology, conservation biology, wildlife management, and related fields. The text is ideal for self-study and advanced graduate-level courses.
Front cover Integrated population models: theory and ecological applications with r and jags Integrated population models: theory and ecological applications with r and jags Copyright Contents Foreword Preface Who should read this book? Conventions in this book Computing The ipmbook package Book web page Acknowledgments Special thanks by michael Special thanks by marc Literature cited 1 - Introduction 1.1 Population modeling in population ecology and management 1.2 The two-step approach to population modeling 1.3 Integrated population models 1.4 Developing integrated population models with the bugs language 1.5 This book 1.5.1 Why this book? 1.5.2 Structure and overview of this book 1.5.3 The importance of simulation 1.5.4 Use of this book in courses and for teaching 1 - Theory of integrated population models 2 - Bayesian statistical modeling using jags 2.1 Introduction 2.2 Parametric statistical modeling 2.2.1 Description of chance processes in probability 2.2.2 Parametric statistical models for inference about chance processes 2.3 Maximum likelihood estimation in a nutshell 2.4 Bayesian inference 2.5 Bayesian computation 2.6 Bugs software: winbugs, openbugs, jags, and nimble 2.7 Using jags to fit simple statistical models from r: generalized linear and generalized linear mixed models 2.7.1 Poisson generalized linear models 2.7.2 Bernoulli generalized linear models 2.7.3 Binomial generalized linear models 2.7.4 Multinomial generalized linear models 2.7.5 Categorical generalized linear models 2.7.6 Normal linear regression or gaussian generalized linear models 2.7.7 Generalized linear models with gaussian random effects 2.8 Fitting general integrated models in jags 2.9 Why we have become bayesians… 2.10 Summary and outlook 2.11 Exercises 3 - Introduction to stage-structured population models 3.1 Introduction 3.2 Age- and stage-structured population models 3.2.1 From a life-cycle graph to population equations 3.2.2 Age-structured pre-birth-pulse model 3.2.3 Stage-structured pre-birth-pulse model 3.2.4 Age-structured post-birth-pulse model 3.2.5 Stage-structured post-birth-pulse model 3.3 Classical analysis of a matrix population model 3.3.1 Analysis of a matrix population model without stochasticity and parameter uncertainty 3.3.2 Analysis of a matrix population model with parameter uncertainty 3.3.3 Analysis of a matrix population model with environmental stochasticity 3.3.4 Analysis of a matrix population model with demographic stochasticity 3.3.5 Analysis of a matrix population model with multiple sources of stochasticity and parameter uncertainty 3.3.6 Matrix population models with density dependence and demographic stochasticity 3.4 Analysis of matrix population models with markov chain monte carlo software 3.4.1 Analysis of a matrix population model without stochasticity and parameter uncertainty 3.4.2 Analysis of a matrix population model with parameter uncertainty 3.4.3 Analysis of a matrix population model with environmental stochasticity 3.4.4 Analysis of a matrix population model with demographic stochasticity 3.4.5 Analysis of a matrix population model with multiple sources of stochasticity and parameter uncertainty 3.4.6 Matrix population models with density dependence and demographic stochasticity 3.5 Summary and outlook 3.6 Exercises 4 - Components of integrated population models 4.1 Introduction 4.2 Overview of the key types of data and associated models that go into an ipm 4.2.1 Levels of information and data aggregation 4.2.2 Observation or measurement errors in our data sets 4.2.3 Levels of aggregation and measurement error in population size survey data 4.2.4 Levels of aggregation and measurement error in productivity survey data 4.2.5 Levels of aggregation and measurement error in survival survey data 4.3 Models for population size surveys 4.3.1 Gaussian state-space models 4.3.2 Effects of “evil” patterns in the measurement error of a gaussian state-space model 4.3.3 Use of estimates from another analysis in a gaussian state-space model or an ipm 4.3.4 Correction of population count data for coverage bias and detection bias 4.3.5 Transitioning from gaussian to discrete-valued state-space models for population counts 4.3.6 The “demographic” state-space model of dail and madsen 4.4 Models for productivity surveys 4.4.1 Poisson models for brood size data 4.4.2 Zero inflation in brood size data 4.4.3 Zero truncation in brood size data 4.4.4 Censoring in brood size data 4.4.5 Underdispersion 4.4.6 Nest survival models 4.5 Models for survival surveys 4.5.1 Cormack-jolly-seber model for capture-recapture data 4.5.1.1 State-space formulation 4.5.1.2 Multinomial formulation 4.5.2 Multistate capture-recapture models 4.5.2.1 State-space formulation 4.5.2.2 Multinomial formulation 4.5.3 Dead-recovery data 4.5.3.1 State-space formulation 4.5.3.2 Multinomial formulation 4.5.4 Joint analysis of capture-recapture and dead-recovery data 4.5.5 Multievent models 4.6 Introduction to spatial capture-recapture modeling 4.7 Summary and outlook 4.8 Exercises 5 - Introduction to integrated population models 5.1 Introduction 5.2 Feeding demographic data into the analysis of a matrix population model 5.2.1 Using capture-recapture data in a matrix population model 5.2.2 Combining capture-recapture and productivity data in a matrix population model 5.3 Our first integrated population model 5.4 The three-step approach to integrated population modeling 5.4.1 Development of a model that links demographic data with population size 5.4.2 Formulation of the likelihood for each available data set separately 5.4.3 Formulation of the joint likelihood 5.4.4 Writing the bugs code for the integrated population model 5.5 Simulation assessment of a simple integrated population model 5.5.1 Simulating data under an integrated population model 5.5.2 Simulation results 5.6 Outlook and summary 5.7 Exercises 6 - Benefits of integrated population modeling 6.1 Introduction 6.2 Parameter estimates with increased precision 6.2.1 Experiencing a gain in precision in a simple simulation 6.2.2 Where does the information come from? 6.3 Estimation of demographic parameters for which there are no explicit data 6.4 Estimation of process correlation among demographic parameters 6.5 Estimation of population structure 6.6 Flexibility 6.6.1 Diversity of data types combined in an ipm 6.6.2 Unequal temporal coverage of data sets—missing values in certain years 6.6.3 Time points of data collection do not match 6.6.4 Using estimated indices instead of counts for population-level data 6.6.5 Observation models for population-level data 6.6.6 Informative priors and sequential analyses 6.7 Summary and outlook 6.8 Exercises 7 - Assessment of integrated population models 7.1 Introduction 7.2 Assumptions of integrated population models 7.2.1 Assumptions made for component data likelihoods 7.2.1.1 Principle of posterior predictive checks 7.2.1.2 Application of posterior predictive checks 7.2.1.3 Sensitivity of posterior predictive checks to diagnose misspecified ipms 7.2.1.4 Posterior predictive checks for ipms with a hidden parameter 7.2.2 The independence assumption 7.2.3 The common demography assumption 7.2.4 Conclusions about integrated population model assumptions 7.3 Under- and overfitting 7.4 Effects of a misspecified observation model 7.5 Outlook and summary 7.6 Exercises 8 - Integrated population models with density dependence 8.1 Introduction 8.2 Density dependence in red-backed shrikes 8.2.1 General population model 8.2.2 Modeling density dependence in survival and productivity 8.2.3 Assessing density dependence at the population level 8.2.4 Modeling density dependence in immigration 8.3 Advantages of ipms for the study of density dependence 8.4 Summary and outlook 8.5 Exercises 9 - Retrospective population analyses 9.1 Introduction 9.2 Correlations between demographic rates and population growth 9.3 Life-table response experiments 9.4 Transient life-table response experiments 9.5 Summary and outlook 9.6 Exercises 10 - Population viability analysis 10.1 Introduction 10.2 Challenges for demographic population viability analysis 10.3 Bayesian population viability analysis 10.4 Use of an integrated population model in population viability analysis 10.5 A population viability analysis for simulated woodchat shrike data 10.5.1 Estimation of extinction probability and related quantities 10.5.2 Comparison of different management options 10.6 Population viability analysis of a population with immigration 10.7 Summary and outlook 10.8 Exercises 2 - Integrated population models in practice 11 - Woodchat shrike 11.1 Introduction 11.2 Data sets 11.3 Population model 11.4 Component data likelihoods 11.4.1 Population count data 11.4.2 Productivity data 11.4.3 Capture-recapture data 11.5 The integrated population model 11.6 Results 11.7 More parsimonious models 11.8 Discussion 12 - Peregrine falcon 12.1 Introduction 12.2 Data sets 12.3 Population model 12.4 Component data likelihoods 12.4.1 Population count data 12.4.2 Productivity data 12.4.3 Dead-recovery data 12.5 The integrated population model 12.6 Results 12.7 Discussion Dedication 13 - Horseshoe bat 13.1 Introduction 13.2 Data sets 13.3 Population model 13.4 Single data likelihoods 13.4.1 Capture-recapture data 13.4.2 Juvenile and population count data 13.5 The integrated population models 13.6 Results 13.7 Prior sensitivity analysis 13.8 Discussion 14 - Hoopoe 14.1 Introduction 14.2 Data sets 14.3 Population model 14.4 Component data likelihoods 14.4.1 Population count data 14.4.2 Capture-recapture data 14.4.3 Productivity data 14.5 Integrated population model 14.6 Results 14.7 Discussion 15 - Black grouse 15.1 Introduction 15.2 Data sets 15.3 Population model 15.4 Component data likelihoods 15.4.1 Population count data 15.4.2 Radio tracking data 15.4.3 Modeling productivity and chick sex ratio 15.5 Integrated population model 15.6 Results 15.7 Discussion 16 - Barn swallow 16.1 Introduction 16.2 Data sets 16.3 Population model 16.4 Component data likelihoods 16.4.1 Population count data 16.4.2 Productivity data 16.4.3 Capture-recapture data 16.5 The integrated population model 16.6 Results 16.7 Discussion 17 - Elk 17.1 Introduction 17.2 Elk in idaho 17.3 Population model 17.4 Component data likelihoods 17.4.1 Age-at-harvest data 17.4.2 Hunter survey data 17.4.3 Radio tracking data 17.5 The integrated population model 17.6 Results on elk population dynamics 17.7 Prior sensitivity analysis 17.8 Specification of the survival process with hazard rates 17.9 Discussion 18 - Cormorant 18.1 Introduction 18.2 Data sets 18.3 Population model 18.4 Component data likelihoods 18.4.1 Population count data 18.4.2 Multistate capture-recapture data 18.5 The integrated population model 18.6 Results 18.7 Discussion 19 - Gray catbird 19.1 Introduction 19.2 Data sets 19.3 Population model 19.4 Component data likelihoods 19.4.1 Population count data (bbs data) 19.4.2 Capture-recapture data (maps data) 19.5 The integrated population model 19.6 Results 19.7 Discussion 20 - Kestrel 20.1 Introduction 20.2 Data sets 20.3 Population model 20.4 Component data likelihoods 20.4.1 Monitoring häufige brutvögel population count data 20.4.2 Atlas population count data 20.4.3 Dead-recovery data 20.4.4 Basis function approach to the modeling of spatial autocorrelation 20.4.5 Scaling the modeled population size to the nominal 1km2 area 20.5 The integrated population model 20.6 Results 20.7 Discussion 20.7.1 The path to landscape demography 20.7.2 The spatial field approach for an integrated population model using large-scale monitoring data 20.7.3 Comparison of different spatial integrated population models 20.7.4 Process-based spatial integrated population models 20.7.5 Alternative models for the kestrels 20.7.6 Comments on use of the dail-madsen model as the core of a spatial ipm 20.7.7 Further possible work with the kestrel ipm 21 - Black bear 21.1 Introduction 21.2 Data sets 21.3 Population model 21.4 Component data likelihoods 21.4.1 Spatial capture-recapture data 21.4.2 Occupancy data 21.5 The integrated population model 21.6 Results 21.7 Discussion 22 - Conclusions 22.1 Fitting integrated population models: a steep mountain … but one that\'s really worth the climb! 22.2 Should we always integrate? 22.3 The great importance of long-term ecological research 22.4 Future directions in integrated population modeling 22.4.1 Increased spatialization of integrated population models 22.4.2 Better representation of individual heterogeneity 22.4.3 Finer temporal scales 22.4.4 Multiple species 22.4.5 Better observation models for population count data 22.4.6 Improving sampling designs for integrated population models 22.4.7 Statistical and computational advances 22.5 Concluding remarks References Author index A B C D E F G H I J K L M N O P Q R S T U V W Y Z Subject index A B C D E F G H I J K L M N O P Q R S T U V W Z Back cover