دسترسی نامحدود
برای کاربرانی که ثبت نام کرده اند
برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید
در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید
برای کاربرانی که ثبت نام کرده اند
درصورت عدم همخوانی توضیحات با کتاب
از ساعت 7 صبح تا 10 شب
ویرایش: نویسندگان: Kraume M., Enders S., Drews A., Schomäcker R., Engell S., Sundmacher K. (ed.) سری: ISBN (شابک) : 9783110709438 ناشر: Walter de Gruyter سال نشر: 2022 تعداد صفحات: 621 [622] زبان: English فرمت فایل : PDF (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود) حجم فایل: 11 Mb
در صورت تبدیل فایل کتاب Integrated Chemical Processes in Liquid Multiphase Systems: From Chemical Reaction to Process Design and Operation به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.
توجه داشته باشید کتاب فرآیندهای شیمیایی یکپارچه در سیستم های چند فازی مایع: از واکنش شیمیایی تا طراحی و عملیات فرآیند نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.
اصول اساسی شیمی سبز استفاده از مواد خام تجدید پذیر، کاتالیزورهای بسیار کارآمد و حلال های سبز مرتبط با بهره وری انرژی و بهینه سازی فرآیند در زمان واقعی است. کارشناسان حوزههای مختلف نشان میدهند که چگونه میتوان تمام سطوح را از مراحل ابتدایی مولکولی تا طراحی و بهرهبرداری از یک کارخانه کامل برای توسعه فرآیندهای تولید جدید و کارآمد بررسی کرد.
The essential principles of green chemistry are the use of renewable raw materials, highly efficient catalysts and green solvents linked with energy efficiency and process optimization in real-time. Experts from different fields show, how to examine all levels from the molecular elementary steps up to the design and operation of an entire plant for developing novel and efficient production processes.
Cover Half Title Also of interest Integrated Chemical Processes in Liquid Multiphase Systems: From Chemical Reaction to Process Design and Operation Copyright Contents Foreword List of Authors Abbreviations List of Symbols Latin Letters Greek Letters Subscripts Dimensionless Numbers 1. Motivation and Objectives 1.1 Goals and Scientific Concept 1.2 Advanced Phase Systems 1.2.1 Thermomorphic Multiphase Systems 1.2.2 Microemulsion Systems 1.2.3 Pickering Emulsions 1.3 Material Basis and Reactions 1.4 Model Process 1.5 Challenges of the Fundamental Investigations 1.5.1 Chemical–Physical Fundamentals 1.5.2 Process Technology 1.5.3 Systems Technology 1.6 Structure of the Book References 2. State of the Art of the Investigated Phase Systems 2.1 Thermomorphic Multiphase Systems 2.1.1 Introduction 2.1.2 Fundamentals and Thermodynamics 2.1.3 Reactions in TMS and Remaining Challenges 2.2 Microemulsion Systems 2.2.1 Introduction 2.2.2 Fundamentals 2.2.2.1 Properties and Phase Behavior of Microemulsion Systems 2.2.2.2 Features and Description of the Three-Phase Body 2.2.2.3 Coalescence Behavior and Separation Dynamics 2.2.3 Industrial Applications and Remaining Challenges 2.3 Pickering Emulsions 2.3.1 Introduction 2.3.2 Fundamentals 2.3.2.1 Stabilizing Mechanism 2.3.2.2 Properties of Pickering Emulsions 2.3.3 Reactions in Pickering Emulsions 2.3.4 Remaining Challenges 2.3.4.1 Pickering Emulsion Characterization and Properties 2.3.4.2 Mass Transfer and Location of Catalyst 2.3.4.3 Continuous L/L Separation for Catalyst Retention 2.4 Reaction Indicators References 3. Thermodynamics, Kinetics, and Mass Transfer 3.1 Thermodynamics 3.1.1 Heterosegmented Perturbed-Chain Statistical Associating Fluid Theory 3.1.2 Lattice Cluster Theory 3.1.3 Phase Equilibria 3.1.4 Interfacial Properties 3.1.5 Reaction Equilibria 3.1.6 Aggregation Formation of Aqueous Surfactant Solutions 3.1.7 Solubilization of Weak Polar Molecules in Aqueous Surfactant Solutions 3.1.8 Conclusion 3.2 Kinetic Modeling of Complex Catalytic Reactions in Multiphase Systems 3.2.1 Introduction 3.2.2 Methodological Approach 3.2.2.1 Reaction Network Investigation 3.2.2.2 Derivation of Explicit Rate Equations 3.2.2.3 Reduction of Kinetic Models 3.2.3 Demonstration of Concept for Coupled Networks 3.2.3.1 Isomerizing Hydroformylation 3.2.3.2 Overall Reaction Network of Tandem Hydroaminomethylation 3.2.4 Thermodynamic Outlook 3.2.5 Summary 3.3 Mass Transfer Processes 3.3.1 Introduction 3.3.2 Experimental Characterization of Multiphase Liquid–Liquid Mass Transport 3.3.2.1 Single Drop Experiments 3.3.2.2 Modified Nitsch Cell 3.3.2.3 Stirred Tank Reactor 3.3.3 Experimental Characterization of Multiphase Gas-Liquid Mass Transport 3.3.3.1 Determination of kLa from Pressure Decrease in a Closed System 3.3.3.2 Stirred Tank Reactor 3.3.3.3 Falling Film Contactor 3.3.4 Gas–Liquid Mass Transfer 3.3.5 Effect of Mass Transfer on Reaction Selectivity References 4. Phase Systems Characterization and Process Development 4.1 Thermomorphic Multiphase Systems 4.1.1 Phase System Characterization 4.1.2 Mass Transfer in Thermomorphic Multiphase Systems 4.1.3 Applications 4.1.4 Recent Developments in TMSs 4.1.4.1 Combination of TMSs with Other Reactor Types 4.1.4.2 Improved Online Analytics 4.1.4.3 Application of TMSs for Complex Reactions in Continuous Operation 4.1.4.4 Combined Reaction Separation Processes 4.1.5 Summary and Outlook 4.2 Microemulsion Systems 4.2.1 Phase System Characterization and Systematic Analysis of MES for the Selected Reaction 4.2.1.1 Dispersion Types in Micellar Multiphase Systems 4.2.1.2 Localization of the Catalyst Complex 4.2.1.3 Mass Transfer in Microemulsion Systems 4.2.1.4 Micellar-Enhanced Ultrafiltration and Organic Solvent Nanofiltration 4.2.1.5 Systematic Development and Analysis of Microemulsions for Process Application 4.2.2 Applications 4.2.3 Application Case Study: Hydroformylation of 1-Dodecene 4.2.4 Concluding Remarks 4.3 Pickering Emulsions 4.3.1 Phase System Characterization 4.3.1.1 Particle Types and Characterization 4.3.1.2 Particles at the Liquid/Liquid Interface 4.3.1.3 Drop Size Distributions and Stability 4.3.1.4 Rheology of Pickering Emulsions 4.3.1.5 Mass Transfer in Pickering Emulsions 4.3.1.6 Filterability of Pickering Emulsions 4.3.2 Applications 4.3.3 Application Case Study 4.3.3.1 Influence of the Catalyst (Rh-SX) on the Pickering Emulsion Properties 4.3.3.2 Emulsions Stabilized by HNT (o/w) 4.3.3.3 Reaction in and Filtration of Pickering Emulsions Using Tailored Nanospheres (w/o) 4.3.3.4 Reaction in and Filtration of Pickering Emulsions Using a Commercial Particle System (w/o) 4.3.4 Concluding Remarks 4.4 Summary and Comparison of Phase Systems References 5. Tools for Systems Engineering 5.1 Overview 5.2 Modeling and Simulation 5.2.1 A Framework for Process Modeling and Simulation 5.2.1.1 Requirements for Collaborative Modeling 5.2.1.2 Data Model for Modeling at the Documentation Level and Hierarchical Modeling 5.2.1.3 Collaborative Modeling and Web Technologies 5.2.1.4 Specification of Simulation and Optimization Problems 5.2.1.5 Model-Based Code Implementation of Models 5.2.1.6 Examples of Models Developed and Managed in MOSAICmodeling 5.2.1.7 Outlook on Model Development and Collaboration 5.2.2 Fluid-Dynamic Investigations of Multiphase Processes 5.2.2.1 Introduction 5.2.2.2 Numerical Flow Simulations of Reactor and Settler for the MES Process 5.2.2.3 Fluid-Dynamic Investigation of Gas-Liquid-Liquid Continuous Helical Flow Reactors 5.2.3 Surrogate Models for Thermodynamic Equilibria of Gas-Liquid and Liquid-Liquid Systems 5.3 Process Optimization 5.3.1 Optimal Design of Reactors for Complex Reaction Systems 5.3.1.1 Reactor-Network Synthesis 5.3.1.2 Elementary Process Functions Methodology 5.3.1.3 EPF Application to the Hydroformylation of Long-Chain Olefins 5.3.1.4 Proof of Concept: Optimal Reactor-Design Hydroformylation of 1-Dodecene 5.3.1.5 Summary 5.3.2 Global Optimization for Process Design 5.3.2.1 Introduction 5.3.2.2 Distillation and Hybrid Separations 5.3.2.3 Multi-stage Separation Networks 5.3.2.4 Combined Reaction and Catalyst Recycling 5.3.2.5 Liquid-Liquid Extraction 5.3.2.6 Summary 5.3.3 Optimization under Uncertainties in Process Development 5.4 Model-Based Process Monitoring and Operation 5.4.1 Online Monitoring and Online Optimization in the Development of Multiphase Processes 5.4.2 Iterative Real-Time Optimization Applied to a Hydroformylation Process on Miniplant Scale 5.4.2.1 Real-Time Optimization and Approaches to Handle the Plant-Model Mismatch 5.4.2.2 Iterative Real-Time Optimization by Modifier Adaptation 5.4.2.3 Application of Real-Time Optimization with Modifier Adaptation to the Hydroformylation of 1-Dodecene in a TMS-system on Miniplant Scale 5.4.2.4 Conclusion and Outlook 5.4.3 State Estimation for Reactions and Separations in a MES System in a Mini plant 5.4.4 Optimal Operation of Reaction-Separation Processes in a MES Miniplant References 6. Integrated Process Design 6.1 Introduction 6.2 Selection Criteria for Liquid Multiphase Systems 6.2.1 Introduction 6.2.2 General Criteria for Phase System Selection 6.2.3 Feasibility and Constraints for Phase Systems Application and Key Experiments 6.2.3.1 Thermomorphic Multiphase System 6.2.3.2 Microemulsion Systems 6.2.3.3 Pickering Emulsions 6.2.4 Systematic Phase System Selection and Process Design 6.3 Solvent Selection for Reactions in Liquid Phases 6.3.1 Standard Gibbs Energies of Chemical Reactions and Transition State Barriers 6.3.2 Introducing a Three-Level Description of Chemical Reactions in Solution 6.3.2.1 Taking Quantum Chemical Calculations from the Gas Phase to Infinitely Diluted Solution 6.3.2.2 From Infinite Dilution to Real Solutions with Thermodynamic Activities of Reacting Species 6.3.3 Solvent Selection for Chemical Equilibria and Reaction Rates 6.3.3.1 Modeling Solvent Effects on Standard Gibbs Energies and Chemical Equilibria 6.3.3.2 Model-Based Screening to Predict Solvent Effects on Reaction Kinetics 6.3.3.3 Beyond Implicit Solvation: The Many Roles of Solvent Molecules 6.3.4 Conclusions 6.4 Integrated Solvent and Process Design 6.4.1 Introduction to Integrated Solvent and Process Design 6.4.2 Survey of Integrated Solvent and Process Design Methodologies 6.4.2.1 Approaches Using Alternative Thermodynamic Models 6.4.2.2 Most Recent Contributions 6.4.2.3 Direct Optimization of Thermodynamic Parameters: Continuous Molecular Targeting 6.4.2.4 Integrated Solvent and Process Design for the Kinetics of Chemical Reactions 6.4.2.5 Genetic Optimization Approach for Complex Solvent-Process Optimization Problems 6.4.3 Integrated Solvent and Process Design for Thermomorphic Multiphase Systems 6.4.4 Conclusions 6.5 Integrated Model-Based Process Design Methodology 6.5.1 Experimental Design for Efficient and Accurate Parameter Identification 6.5.2 Integrated Process Design 6.5.2.1 Methodology 6.5.2.2 Methods for Sensitivity Analysis in Process Synthesis 6.5.2.3 Case Study I: Hydroaminomethylation of 1-Decene 6.5.2.4 Case Study II: Hydroformylation of 1-Dodecene 6.5.3 Advanced Integration Potential for Systematic Multiphase Process Design 6.5.3.1 Model-Based Solvent Selection 6.5.3.2 Model-Based Optimal Reactor Design 6.5.4 Summary References 7. Résumé Index