دسترسی نامحدود
برای کاربرانی که ثبت نام کرده اند
برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید
در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید
برای کاربرانی که ثبت نام کرده اند
درصورت عدم همخوانی توضیحات با کتاب
از ساعت 7 صبح تا 10 شب
ویرایش: 1st ed. 2019
نویسندگان: Christian Constanda (editor). Paul Harris (editor)
سری:
ISBN (شابک) : 3030160769, 9783030160760
ناشر: Birkhäuser
سال نشر: 2019
تعداد صفحات: 476
زبان: English
فرمت فایل : PDF (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود)
حجم فایل: 6 مگابایت
کلمات کلیدی مربوط به کتاب روش های انتگرال در علوم و مهندسی: درمان تحلیلی و تقریب های عددی: ریاضیات، حساب دیفرانسیل و انتگرال، معادلات دیفرانسیل
در صورت تبدیل فایل کتاب Integral Methods in Science and Engineering: Analytic Treatment and Numerical Approximations به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.
توجه داشته باشید کتاب روش های انتگرال در علوم و مهندسی: درمان تحلیلی و تقریب های عددی نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.
Preface The International Steering Committee of IMSE Contents Contributors 1 Singularity Subtraction for Nonlinear Weakly Singular Integral Equations of the Second Kind 1.1 Introduction 1.2 Singularity Subtraction 1.3 Convergence 1.4 Numerics 1.5 Conclusions References 2 On the Flow of a Viscoplastic Fluid in a Thin Periodic Domain 2.1 Introduction 2.2 Statement of the Problem 2.3 Main Convergence Result 2.4 Conclusions and Perspectives References 3 q-Calculus Formalism for Non-extensive Particle Filter 3.1 Introduction 3.2 The Non-extensive Particle Filter 3.3 Definition of Stable Probability Density Function 3.4 q-Calculus 3.4.1 q-Fourier Transform, q-Gaussian Function, and q-Stability 3.5 Final Remarks Appendix: Non-extensive Tsallis' Thermostatistics Reference 4 Two-Operator Boundary-Domain Integral Equations for Variable-Coefficient Dirichlet Problem with General Data 4.1 Preliminaries 4.2 Parametrix-Based Potential Operators 4.3 Third Green Identities and Integral Relations 4.4 The Dirichlet Problem and Two-Operator BDIEs 4.5 Equivalence and Invertibility of BDIE Systems 4.6 Conclusion Reference 5 Two-Operator Boundary-Domain Integral Equations for Variable Coefficient Dirichlet Problem in 2D 5.1 Preliminaries 5.2 Parametrix and Potential Type Operators 5.3 Invertibility of the Single Layer Potential Operator in 2D 5.4 Dirichlet Problem and Two-Operator Third Green Identity 5.5 Two-Operator BDIEs for Dirichlet BVP 5.6 Equivalence and Invertibility Theorems 5.7 Conclusion Reference 6 Solution of a Homogeneous Version of Love Type Integral Equation in Different Asymptotic Regimes 6.1 Introduction 6.2 General Properties 6.3 Small Interval (β1) 6.4 Large Interval (β1) 6.5 Numerical Illustrations 6.6 Conclusion References 7 A Semi-analytical Solution for One-Dimensional OilDisplacement by Miscible Gas in a Homogeneous PorousMedium 7.1 Introduction 7.2 Physical and Mathematical Model 7.3 Example 7.4 Summary and Conclusions References 8 Bending of Elastic Plates: Generalized Fourier Series Method for the Robin Problem 8.1 Introduction 8.2 The Boundary Value Problem 8.3 The Computational Algorithm 8.4 Numerical Example References 9 The Adjoint Spectral Green's Function Method Applied to Direct and Inverse Neutral Particle Source–Detector Problems 9.1 Introduction 9.2 The Adjoint SN Transport Problem 9.3 The Adjoint Spectral Green's Function (SGF) Method 9.4 Spatial Reconstruction Scheme for the SGF Solution 9.5 Source–Detector Inverse Problems 9.6 Numerical Examples 9.7 Conclusions and Perspectives References 10 Relaxation of Periodic and Nonstandard Growth Integralsby Means of Two-Scale Convergence 10.1 Introduction 10.2 Preliminaries 10.2.1 Orlicz-Sobolev Spaces 10.2.2 Homogenization 10.3 Proof of Theorem 1 References 11 A Stiff Problem: Stationary Waves and Approximations 11.1 Introduction and Statement of the Problem 11.2 Some Explicit Computations for Standing Waves 11.2.1 Results for the Dimension N=2 11.2.2 Results for the Dimension N>2 11.3 On Approaches to Solutions of the Evolution Problem References 12 Modelling Creep in Concrete Under a Variable External Load 12.1 Introduction 12.1.1 Objectives 12.2 Problem Formulation 12.3 Viscoelastic Model Applied to Creeping Concrete 12.3.1 Solutions 12.4 A Polynomial Function for the External Load 12.4.1 Solutions 12.5 Conclusions and Ideas for Future Work References 13 A Combined Boundary Element and Finite Element Modelof Cell Motion due to Chemotaxis 13.1 Introduction 13.2 Mathematical Model 13.2.1 Finite Element Method for the Chemical Concentrations 13.2.2 Boundary Integral Method for the Fluid Flow 13.2.3 Time Integration Method 13.3 Numerical Results 13.4 Conclusions and Future Work References 14 Numerical Calculation by Quadruple Precision Higher OrderTaylor Series Method of the Pythagorean Problemof Three Bodies 14.1 Introduction 14.2 Taylor Series of Ordinary Differential Equations 14.2.1 Solution of Simple Differential Equations by Taylor Series 14.2.2 Calculation of Square Root of Taylor Series 14.3 Quad Precision Calculation 14.4 Calculation of Three-Body Problem of Pythagoras 14.5 Conclusion References 15 Shape Optimization for Interior Neumann and Transmission Eigenvalues 15.1 Introduction 15.1.1 Contribution of the Paper 15.1.2 Outline of the Paper 15.2 Shape Optimization for Interior Neumann Eigenvalues 15.3 Shape Optimization for Interior Transmission Eigenvalues 15.4 Summary and Outlook References 16 On the Integro-Differential Radiative Conductive Transfer Equation: A Modified Decomposition Method 16.1 Introduction 16.2 The Integro-Differential Radiative Conductive Transfer Equation 16.3 Solution by the Modified Decomposition Method 16.4 Numerical Results and Discussion 16.4.1 Consistency 16.4.2 A Convergence Criterion by Stability Analysis 16.5 Conclusions References 17 Periodic Transmission Problems for the Heat Equation 17.1 Introduction 17.2 Preliminaries and Notation 17.3 A Periodic Non-ideal Transmission Problem 17.4 A Periodic Ideal Transmission Problem References 18 On United Boundary-Domain Integro-Differential Equations for Variable Coefficient Dirichlet Problem with General Right-Hand Side 18.1 Introduction 18.2 Co-normal Derivatives and the Boundary Value Problem 18.3 Parametrix and Potential Type Operators 18.4 The Third Green Identity and Integral Relations 18.5 United Boundary-Domain Integro-Differential Equations 18.5.1 United Boundary-Domain Integro-Differential Problem 18.5.2 United Boundary-Domain Integro-Differential Equation 18.6 Conclusion References 19 Rescaling and Trace Operators in Fractional Sobolev Spaces on Bounded Lipschitz Domains with Periodic Structure 19.1 Introduction 19.2 Function Spaces 19.3 Rescaling Norms on Oscillating Lipschitz Manifold 19.4 Unfolding in Sobolev–Slobodetskii Spaces in Perforated Domains 19.5 Rescaling of the Trace Theorem in W2s References 20 Design and Performance of a Multiphase Flow Manifold 20.1 Nomenclature 20.2 Introduction 20.3 Experimental Setup 20.3.1 Flow Loop 20.3.2 BFM Test Section 20.3.3 Data Acquisition System 20.3.4 Test Matrix 20.3.5 Experimental Results 20.4 Modeling 20.4.1 Main Manifold Diameter 20.4.2 Main Manifold Length 20.5 Comparison Study References 21 On the Polarization Matrix for a Perforated Strip 21.1 Introduction 21.2 Some General Properties of the Polarization Matrix 21.2.1 The Case of a Symmetric Hole 21.3 The Case of a ``Big'' Rectangular Hole 21.4 The Case of a ``Small'' Symmetric Hole References 22 Operator Perturbation Approach for Fourth Order Elliptic Equations with Variable Coefficients 22.1 Periodic Boundary Value Problem 22.1.1 Problem in the Weak and Operator Form Potential Polarization Field 22.1.2 Orthogonal Decomposition of the 4th-Order Differential Operator on Ker and Im 22.1.3 Periodic Fundamental Solution of the Biharmonic Equation 22.2 Neumann Series and Its Convergence Estimate by Spectral Properties 22.3 Bounds on C0(x) 22.3.1 Voigt-Reuss Bounds for the Effective Coefficients References 23 Extension of the Fully Lagrangian Approach for the Integration of the Droplet Number Density on Caustic Formations 23.1 Introduction 23.2 The Number Density in a Finite Volume 23.3 The Calculation of the Hessian in the Second Order FLA for Multiple Dimensions 23.4 Calculation of the Hessian Magnitude H Across the Caustic Formation 23.5 Droplets in a Periodic Two-Dimensional Array of Taylor Vortices 23.6 Conclusion References 24 The Nodal LTSN Solution in a Rectangular Domain: A New Method to Determine the Outgoing Angular Flux at theBoundary 24.1 Introduction 24.2 The LTSN Transport Equations in 2D 24.3 Numerical Results for Case 1 24.4 An Alternative to Determine the Unknown Angular Fluxes at the Boundaries 24.5 Numerical Results for Case 2 24.6 Conclusion Reference 25 Image Processing for UAV Autonomous Navigation Applying Self-configuring Neural Network 25.1 Introduction 25.2 Applied Model 25.2.1 Platform Used 25.2.2 Kalman Filter Applied to Autonomous Navigation 25.3 Neural Network Applied to Autonomous Navigation 25.3.1 MPCA Metaheuristic for ANN Optimal Architecture 25.4 Experiment Results 25.5 Final Remarks Reference 26 Towards the Super-Massive Black Hole Seeds 26.1 Introduction 26.2 The Forward Problem: Conservation Law to the Ancient Black Holes 26.3 Mathematical Framework for the Inverse Solution 26.3.1 Regularization 26.3.2 Optimization 26.4 Identifying Black Hole Initial Distribution 26.5 Final Remarks Reference 27 Decomposition of Solutions of the Wave Equationinto Poincaré Wavelets 27.1 Introduction 27.2 Statement of the Problem 27.3 Affine Poincaré CWA 27.4 Wavelet Analysis for Solutions in Homogeneous Medium 27.5 Decomposition of Solutions for an Inhomogeneous Medium 27.6 Conclusions References 28 The Method of Fundamental Solutions for Computing Interior Transmission Eigenvalues of Inhomogeneous Media 28.1 Introduction 28.2 The ITEP and the Modified MFS 28.3 Approximation Analysis 28.4 Numerical Examples 28.5 Conclusion References 29 Tensor Product Approach to Quantum Control 29.1 Introduction 29.2 Optimal Quantum Control 29.2.1 Dynamic Optimisation Problem 29.2.2 First-Order Optimisation Framework 29.2.3 GRAPE Algorithm 29.3 Tensor Train Format and the tAMEn Algorithm 29.4 Numerical Experiments 29.5 Conclusions and Future Work References 30 Epidemic Genetic Algorithm for Solving Inverse Problems: Parallel Algorithms 30.1 Introduction 30.2 Inverse Problem 30.3 Parallel Genetic Algorithm with Epidemic Operator 30.3.1 Parallel Strategies for Epidemic-GA 30.4 Numerical Results 30.5 Conclusion Reference 31 A Chemical Kinetics Extension to the Advection-Diffusion Equation by NOx and SO2 31.1 Introduction 31.2 Tropospheric Chemistry 31.3 The Extended Advection-Diffusion Equation 31.4 Model Validation and Effects Due to Chemical Reactions 31.5 Conclusion References 32 On the Development of an Alternative Proposition of Cross Wavelet Analysis for Transient Discrimination Problems 32.1 Introduction 32.2 Developments 32.2.1 Classic Definitions 32.2.2 Alternative Definitions for Cross Wavelet Spectrum and Wavelet Coherence 32.3 Signal Composition and Transient Analysis 32.4 Discussion and Conclusions References 33 A Simple Non-linear Transfer Function for a Wiener-Hammerstein Model to Simulate Guitar Distortion and Overdrive Effects 33.1 Introduction 33.2 The Development of the NLTF 33.3 Model Validation 33.4 Results 33.5 Discussion 33.6 Conclusions References 34 Existence of Nonlinear Problems: An Applicative and Computational Approach 34.1 Introduction 34.2 Preliminaries 34.3 Fixed Point Problem Under Constraint Inequality for (F,ψ)-Rational Type Contraction 34.4 Some Consequences 34.4.1 Common Fixed Point Problem Under One Constraint Equality for (F,ψ)-Rational Type Contraction 34.5 Application to Integral Equation References 35 Solving Existence Problems via F-Reich Contraction 35.1 Introduction and Basic Facts 35.2 F-Reich Contraction 35.3 Applications 35.3.1 Application to Concentration of a Diffusing Substance 35.3.2 Application to Integral Equation References 36 On the Convergence of Dynamic Iterations in Terms ofModel Parameters 36.1 Introduction 36.2 Convergence Analysis 36.3 Numerical Examples 36.4 Concluding Remarks and Future Work Reference Index