دسترسی نامحدود
برای کاربرانی که ثبت نام کرده اند
برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید
در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید
برای کاربرانی که ثبت نام کرده اند
درصورت عدم همخوانی توضیحات با کتاب
از ساعت 7 صبح تا 10 شب
ویرایش: نویسندگان: Constanda. Christian, Lamberti. Pier Domenico, Musolino. Paolo, Riva. Matteo Dalla سری: ISBN (شابک) : 9783319593845, 9783319593838 ناشر: Birkhäuser سال نشر: 2017 تعداد صفحات: 342 زبان: English فرمت فایل : PDF (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود) حجم فایل: 6 مگابایت
کلمات کلیدی مربوط به کتاب روش های یکپارچه در علوم و مهندسی جلد 1، فنون نظری: معادلات انتگرال -- راه حل های عددی -- کنگره ها ، آنالیز ریاضی -- کنگره ها ، علوم -- ریاضیات -- کنگره ها ، ریاضیات مهندسی -- کنگره ها ، ریاضیات / تجزیه و تحلیل عددی ، ریاضیات مهندسی ، معادلات انتگرال -- حل های عددی ، آنالیز ریاضی ، - ریاضیات
در صورت تبدیل فایل کتاب Integral methods in science and engineering. Volume 1, Theoretical techniques به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.
توجه داشته باشید کتاب روش های یکپارچه در علوم و مهندسی جلد 1، فنون نظری نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.
این جلد ارائه شده شامل مجموعه ای از مقالات در مورد جدیدترین
پیشرفت ها در روش های انتگرال است. اولین جلد از دو جلد، این
اثر بر ساخت روش های انتگرال نظری تمرکز دارد. فصول این کتاب که
توسط محققان شناخته شده بین المللی نوشته شده است، بر اساس
سخنرانی های ارائه شده در چهاردهمین کنفرانس بین المللی روش های
انتگرال در علوم و مهندسی، که در 25 تا 29 ژوئیه 2016 در
پادووا، ایتالیا برگزار شد، است. طیف وسیعی از موضوعات پرداخته
شده است، مانند: • معادلات انتگرال • همگن سازی • روش های
دوگانگی • طراحی بهینه • تکنیک های منسجم
این مجموعه مورد توجه محققان در ریاضیات کاربردی، فیزیک، و
مهندسی مکانیک و برق خواهد بود. و همچنین دانشجویان فارغ
التحصیل در این رشته ها و سایر متخصصانی که از ادغام به عنوان
یک ابزار ضروری در کار خود استفاده می کنند.
This contributed volume contains a collection of articles on
the most recent advances in integral methods. The first of
two volumes, this work focuses on the construction of
theoretical integral methods. Written by internationally
recognized researchers, the chapters in this book are based
on talks given at the Fourteenth International Conference on
Integral Methods in Science and Engineering, held July 25-29,
2016, in Padova, Italy. A broad range of topics is addressed,
such as:• Integral equations• Homogenization• Duality
methods• Optimal design• Conformal techniques
This collection will be of interest to researchers in applied
mathematics, physics, and mechanical and electrical
engineering, as well as graduate students in these
disciplines, and to other professionals who use integration
as an essential tool in their work.
Preface Digital Art by Walid Ben Medjedel Contents List of Contributors 1 An L1-Product-Integration Method in Astrophysics 1.1 Introduction 1.2 A Product-Integration Method in C 1.3 Iterative Refinement 1.4 Numerical Evidence References 2 Differential Operators and Approximation Processes Generated by Markov Operators 2.1 Introduction 2.2 Canonical Elliptic Second-Order Differential Operators and Bernstein-Schnabl Operators 2.3 Other Classes of Differential Operators and Approximation Processes 2.4 Final Remarks References 3 Analysis of Boundary-Domain Integral Equations for Variable-Coefficient Neumann BVP in 2D 3.1 Preliminaries 3.2 Parametrix-Based Potential Operators 3.3 BDIEs for Neumann BVP 3.4 Equivalence and Invertibility Theorems 3.5 Perturbed BDIE Systems for the Neumann Problem 3.6 Conclusion References 4 A Measure of the Torsional Performances of Partially Hinged Rectangular Plates 4.1 Introduction 4.2 Variational Setting and Gap Function Definition 4.3 Proof of Theorem 1 4.4 Proof of Theorem 2 4.5 Proofs of Theorems 3 and 4 References 5 On a Class of Integral Equations Involving Kernels of Cosine and Sine Type 5.1 Introduction 5.2 Integral Equations Generated by an Integral Operator with Cosine and Sine Kernels 5.3 Operator Properties 5.3.1 Invertibility and Spectrum 5.3.2 Parseval-Type Identity and Unitary Properties 5.3.3 Involution 5.3.4 New Convolution References 6 The Simple-Layer Potential Approach to the Dirichlet Problem: An Extension to Higher Dimensions of Muskhelishvili Method and Applications 6.1 Introduction 6.2 Muskhelishvili\'s Method and Its Extension to Rn 6.2.1 Muskhelishvili\'s Method 6.2.2 Conjugate Differential Forms 6.2.3 The Extension to Higher Dimensions of Muskhelishvili Method 6.3 The Multiple-Layer Approach References 7 Bending of Elastic Plates: Generalized Fourier Series Method 7.1 Introduction 7.2 The Boundary Value Problem 7.3 Numerical Example 7.4 Graphical Illustrations 7.5 The Classical Gram–Schmidt Procedure (CGS) 7.6 The Modified Gram–Schmidt Procedure (MGS) 7.7 The Householder Reflection Procedure (HR) References 8 Existence and Uniqueness Results for a Class of Singular Elliptic Problems in Two-Component Domains 8.1 Introduction 8.2 Setting of the Problem 8.3 A Priori Estimates 8.4 Main Results References 9 Fredholmness of Nonlocal Singular Integral Operators with Slowly Oscillating Data 9.1 Introduction 9.2 Invertibility Criteria for Wiener Type Functional Operators 9.3 Mellin Pseudodifferential Operators 9.4 Fredholmness of the Operator N References 10 Multidimensional Time Fractional Diffusion Equation 10.1 Introduction 10.2 Preliminaries 10.3 Fundamental Solution of the Multidimensional Time Fractional Diffusion-Wave Equation 10.4 Fractional Moments 10.5 Graphical Representations of the Fundamental Solution 10.5.1 Case n=1 10.5.2 Case n=2 10.6 Application to Diffusion in Thermoelasticity References 11 On Homogenization of Nonlinear Robin Type Boundary Conditions for the n-Laplacian in n-DimensionalPerforated Domains 11.1 Introduction 11.2 Setting of the Problem and Homogenized Problems 11.2.1 Table of Homogenized Problems 11.3 Preliminary Results 11.4 Critical Relation for the Adsorption 11.5 Critical Size for Perforations 11.6 Extreme Cases References 12 Interior Transmission Eigenvalues for Anisotropic Media 12.1 Introduction 12.2 Problem Formulation 12.3 Boundary Integral Equations 12.4 Numerical Results 12.5 Summary and Outlook References 13 Improvement of the Inside-Outside Duality Method 13.1 Introduction and Motivation 13.2 Problem Formulation 13.3 The Inside-Outside Duality Method 13.4 Improvement and Numerical Results Product Gaussian Quadrature 13.4.1 Lebedev Quadrature 13.4.2 Spherical t-Design 13.4.3 Numerical Results 13.5 Summary and Outlook References 14 A Note on Optimal Design for Thin Structures in the Orlicz–Sobolev Setting 14.1 Introduction 14.2 Preliminaries 14.3 Proof of Theorem 1 References 15 On the Radiative Conductive Transfer Equation: A Heuristic Convergence Criterion by Stability Analysis 15.1 Introduction 15.2 The Radiative Conductive Transfer Equation in Cylinder Geometry 15.3 Solution by the Decomposition Method 15.4 A Heuristic Convergence Criterion by Stability Analysis 15.5 Numerical Results 15.6 Conclusions References 16 An Indirect Boundary Integral Equation Method for Boundary Value Problems in Elastostatics 16.1 Preliminaries 16.2 Indirect Method References 17 An Instability Result for Suspension Bridges 17.1 Introduction 17.2 The Isoenergetic Poincaré Map and the Asymptotic Behavior of Its Linearization Lk 17.3 Some Related Problems and Questions 17.4 Numerical Examples References 18 A New Diffeomorph Conformal Methodology to Solve Flow Problems with Complex Boundaries by an Equivalent Plane Parallel Problem 18.1 Introduction 18.2 Coordinate Transformations 18.3 Transformation by Invariance 18.4 Application to a Navier-Stokes Problem 18.5 Application to an Advection-Diffusion Problem 18.6 A Numerical Example 18.7 Conclusion References 19 A New Family of Boundary-Domain Integral Equations for the Mixed Exterior Stationary Heat Transfer Problem with Variable Coefficient 19.1 Introduction 19.2 Preliminaries 19.3 Boundary Value Problem 19.4 Parametrices and Remainders 19.5 Surface and Volume Potentials 19.6 Third Green Identities and Integral Relations 19.7 Boundary-Domain Integral Equation System 19.8 Invertibility References 20 Radiation Conditions and Integral Representations for Clifford Algebra-Valued Null-Solutions of the Iterated Helmholtz Operator 20.1 Introduction 20.2 Fundamental Solutions 20.3 Integral Representations References 21 A Wiener-Hopf System of Equations in the Steady-State Propagation of a Rectilinear Crack in an Infinite Elastic Plate 21.1 Introduction 21.2 Boundary Conditions 21.3 Wiener-Hopf Factorization References 22 Mono-Energetic Neutron Space-Kinetics in Full Cylinder Symmetry: Simulating Power Decrease 22.1 Introduction 22.2 The Model 22.3 Variable Separation 22.4 A Closed Form Solution in Cylinder Geometry 22.5 Numerical Results 22.6 Conclusion References 23 Asymptotic Solutions of Maxwell\'s Equations in a Layered Periodic Structure 23.1 Introduction 23.2 Maxwell\'s Equations and the Floquet–Bloch Solutions 23.3 Two-Scale Solutions of the Maxwell Equations 23.4 Boundary Value Problem in a Half-Space 23.5 Conclusions References 24 Some Properties of the Fractional Circle Zernike Polynomials 24.1 Introduction 24.2 Preliminaries 24.3 Fractional Circle Zernike Polynomials 24.4 Graphical Representation of Fractional Circle Zernike Polynomials References 25 Double Laplace Transform and Explicit Fractional Analogue of 2D Laplacian 25.1 Introduction 25.2 Double Laplace Transforms. Definition and Main Properties 25.3 Application of the Double Laplace Transform to Explicit Fractional Laplacian 25.3.1 Power Type Fractional Laplacian α,β 25.3.2 Skewed Fractional Laplacian α,β; Q-+in the Quarter-Plane 25.4 Discussion and Outlook References 26 Stability of the Laplace Single Layer Boundary Integral Operator in Sobolev Spaces 26.1 Introduction 26.2 Strong Domain Variational Formulation 26.3 Ultra-Weak Domain Variational Formulation 26.4 Single Layer Potential References 27 Spectral Lanczos\' Tau Method for Systems of Nonlinear Integro-Differential Equations 27.1 Introduction 27.2 Preliminaries 27.3 The Tau Method for Integro-Differential Problems 27.4 Nonlinear Approach for Integro-Differential Problems 27.5 Contributions to Stability 27.6 Numerical Results 27.7 Conclusions References 28 Discreteness, Periodicity, Holomorphy, and Factorization 28.1 Introduction 28.2 Discreteness 28.3 Periodicity 28.4 Holomorphy 28.5 Factorization 28.5.1 Conical Case Conclusion References 29 Modes Coupling Seismic Waves and VibratingBuildings: Existence 29.1 Introduction 29.2 Low Frequency Analysis 29.3 High Frequency Asymptotic Analysis References Index