دسترسی نامحدود
برای کاربرانی که ثبت نام کرده اند
برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید
در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید
برای کاربرانی که ثبت نام کرده اند
درصورت عدم همخوانی توضیحات با کتاب
از ساعت 7 صبح تا 10 شب
ویرایش: Revised Edition نویسندگان: Granger. Jill N., Granger. Robert M., Sienerth. Karl D., Yochum. Hank M سری: ISBN (شابک) : 9780190865337, 0199942315 ناشر: Oxford University Press سال نشر: 2017 تعداد صفحات: 882 زبان: English فرمت فایل : PDF (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود) حجم فایل: 91 مگابایت
کلمات کلیدی مربوط به کتاب تحلیل ابزاری: تجزیه و تحلیل ابزاری,Instrumentelle Analytik,Measurement,Naturwissenschaftliches Instrument,دستگاه ها و ابزارهای علمی,کتاب های درسی,تحلیل ابزاری -- کتاب های درسی
در صورت تبدیل فایل کتاب Instrumental analysis به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.
توجه داشته باشید کتاب تحلیل ابزاری نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.
پایه ها جعبه ابزار تحلیلگر؛ مکانیک کوانتومی و طیف سنجی ; مقدمه ای بر اپتیک؛ مقدمه ای بر الکترونیک ابزاری؛ سیگنال ها و نویز: مقدمه ای بر پردازش سیگنال -- طیف سنجی و طیف سنجی طیف سنجی فرابنفش مولکولی و مرئی ; طیف سنجی جذب اتمی ; طیف سنجی لومینسانس ; طیف سنجی انتشار اتمی ; اشعه ایکس: تکنیک های مرتبط طیف سنجی مادون قرمز ؛ طیف سنجی رامان ; طیف سنجی جرمی; مقدمه ای بر طیف سنجی تشدید مغناطیسی هسته ای -- علم جداسازی کروماتوگرافی مایع؛ کروماتوگرافی گازی ؛ الکتروفورز -- تکنیک های الکتروتحلیلی پتانسیومتری و پروب ; ولتامتری تحلیلی -- مباحث اضافی. تکنیک های تجزیه و تحلیل مواد و سطح؛ درک آزمایش تشدید مغناطیسی هسته ای؛ تجزیه و تحلیل داده های آماری.؛ \"تحلیل درونی پوششی جامع، مدرن و جذاب از ابزار دقیق شیمیایی را ارائه می دهد، که با در نظر گرفتن دانشجوی کارشناسی نوشته شده است. در هسته آن، شامل تئوری اساسی، طراحی ابزار، کاربردها، و عملکرد طیف سنجی، الکتروتحلیلی است. ابزار دقیق کروماتیوگرافی و طیف جرمی. این ابزار مهارتهای لازم را برای دانشآموزان فراهم میکند تا مزایا و معایب نسبی انتخاب یک تکنیک تحلیلی نسبت به روش دیگر را با ترکیب مقایسههای مستقیم تکنیکها با بحث در مورد چگونگی تأثیر این انتخابها بر تفسیر دادهها شناسایی کنند. شکل نهایی آن.\"--
Foundations. The analyst's toolbox ; Quantum mechanics and spectroscopy ; An introduction to optics ; An introduction to instrumental electronics ; Signals and noise: an introduction to signal processing -- Spectroscopy & spectrometry. Molecular ultraviolet and visible spectroscopy ; Atomic absorption spectroscopy ; Luminescence spectroscopy ; Atomic emission spectroscopy ; X-ray: related techniques ; Infrared spectroscopy ; Raman spectroscopy ; Mass spectrometry ; An introduction to nuclear magnetic resonance spectroscopy -- Separation science. Liquid chromatography ; Gas chromatography ; Electrophoresis -- Electroanalytical techniques. Potentiometry and probes ; Analytical voltammetry -- Additional topics. Material and surface analysis techniques ; Understanding the nuclear magnetic resonance experiment ; Statistical data analysis.;"Intrumental Analysis provides comprehensive, modern, and engaging coverage of chemical instrumentation, written with the undergraduate student in mind. At its core, it includes the underlying theory, instrumental design, applications, and operation of spectroscopic, electroanalytical, chromatiographic, and mass spectral instrumentation. It provides students with the requistic skills to identify the comparative advantages and disadvantages in choosing one analytical technique over another by combining direct comparisons of the techniques with a discussion of how these choices affect the interpretation of the data in its final form."--
Cover......Page 1
Half-title......Page 3
Title......Page 5
Copyright......Page 6
Brief Contents......Page 7
Contents......Page 9
Preface......Page 29
Chapter 1. The Analyst’s Toolbox......Page 35
Profile—A Scenario......Page 36
1.1 Introduction......Page 37
1.2 Ultraviolet-Visible Spectroscopy......Page 38
1.3 Infrared Spectroscopy......Page 40
Compare and Contrast—Ultraviolet-Visible versus Fourier Transform Infrared in Quantitative Analysis......Page 42
1.4 Nuclear Magnetic Resonance Spectrometry......Page 43
1.5 Mass Spectrometry......Page 45
Profile—Putting It All Together......Page 47
1.6 Chromatography......Page 48
Profile—Establishing a Forensic Protocol......Page 50
Further Reading......Page 52
Exercises......Page 53
Chapter 2. Quantum Mechanics and Spectroscopy......Page 55
2.1 Introduction......Page 56
2.2 The Interaction Between Electromagnetic Radiation and Matter—Absorption and Emission of Light......Page 58
Profile—Erwin Schrödinger......Page 59
2.3 Molecular Vibrations Lead to Quantized Energy Levels......Page 63
Profile—Mass Dampers......Page 66
2.4 Molecular Rotation Leads to Quantized Energy Levels......Page 69
2.5 Transitions Between Vibrational and Rotational States: The Role of Thermal Energy and Nonradiative Decay......Page 71
2.6 Transitions Between Electronic, Vibrational, and Rotational States: Putting It All Together......Page 74
Fluorescence and Phosphorescence......Page 75
2.7 Energy Levels of Protons in a Magnetic Field—Nuclear Magnetic Resonance Spectroscopy......Page 76
Exercises......Page 80
Chapter 3. An Introduction to Optics......Page 83
Profile—The Diffraction Grating: A Key Component of Many Optical Instruments......Page 84
Wavelength, Energy, and Frequency......Page 85
Profile—The Photoelectric Effect Shows the Particle Nature of Light......Page 86
Coherence......Page 88
Polarization......Page 89
Interference......Page 90
Diffraction......Page 93
Scattering......Page 94
Mirrors and Ref lection......Page 96
Lenses and Refraction......Page 97
Collecting and Collimating Light......Page 100
Focusing a Collimated Laser Beam......Page 101
Polarizers......Page 103
Introduction to Prism and Grating Monochromators......Page 104
The Diffraction Grating......Page 105
Profile—Optics that Operate by Diffraction: The Fresnel Zone Plate......Page 110
The Michelson Interferometer......Page 115
Optical Filters and Power Reduction......Page 116
3.5 Beyond Linear Optics......Page 118
Profile—Innovation and Discovery in Optics: Metamaterials Hold Promise for the Perfect Lens, Invisibility Cloaks, and More......Page 119
Exercises......Page 120
Chapter 4 An Introduction to Instrumental Electronics......Page 123
4.1 Introduction......Page 124
Circuit Symbols......Page 126
Current, Voltage, and Multimeter Basics......Page 127
Series Circuit Elements and the Voltage Divider......Page 128
Parallel Circuit Elements and the Current Divider......Page 130
The Multimeter......Page 134
Voltage and Current Loading Error......Page 135
Profile—Electronics for a Very Simple Light-Sensing Instrument: Voltage Divider Photoresistor Circuit......Page 136
4.3 Capacitors and Resistor–Capacitor (RC) Circuits......Page 138
4.4 Alternating Current (AC) Circuits......Page 142
Ohm’s Law for Alternating Current (AC) Circuits......Page 144
Low-Pass, High-Pass, Band-Pass, and Band-Stop Filters......Page 145
4.5 Operational Amplifiers......Page 148
Inverting and Noninverting Operational Amplifiers......Page 149
Current-to-Voltage Amplifier......Page 150
The Voltage Follower......Page 151
Operational Amplifier Comparator......Page 152
Cascading Operational Amplifiers......Page 153
Profile—Electronics for an Automatic Titrator: Cascaded Operational Amplifiers and the Differentiating Operational Amplifier......Page 156
Diodes......Page 157
Integrated Circuits......Page 158
Profile—Electronics for a Simple Absorption Spectrophotometer: Operational Amplifier as Current-to-Voltage Amplifier......Page 159
4.7 Analog and Digital Signals......Page 160
Exercises......Page 162
Chapter 5. Signals and Noise: An Introduction to Signal Processing......Page 165
5.1 Introduction to Signals......Page 166
5.2 Sources and Characteristics of Noise......Page 168
Thermal Noise......Page 169
Shot Noise......Page 170
Flicker Noise......Page 171
5.3 The Signal-to-Noise Ratio and Ensemble Averaging......Page 173
Analog Processing......Page 176
Boxcar Averaging with Hardware......Page 177
Modulation and the Lock-In Amplifier......Page 179
Digital Signal Processing......Page 181
Savitzky-Golay Smoothing......Page 185
Fourier Filtering......Page 187
5.5 Sampling Rates, the Nyquist Frequency, and Aliasing......Page 189
5.6 Analog-to-Digital Conversion......Page 191
Exercises......Page 192
Advanced Exercises......Page 193
Chapter 6. Molecular Ultraviolet and Visible Spectroscopy......Page 195
Profile—James Clerk Maxwell......Page 196
6.1 Introduction......Page 197
6.2 Electronic Excitation and Molecular Structure......Page 199
Structure and “Color”......Page 201
Vibronic Transitions......Page 203
DPK: A Case Study......Page 204
Transition Metal Coordination Compounds......Page 205
Selection Rules......Page 207
Beer’s Law......Page 210
Deviations from Beer’s Law......Page 212
Fixed-Wavelength Spectrometers......Page 215
Profile—HACH DR3900......Page 216
Scanning Spectrometers......Page 218
Compare and Contrast—Single- and Dual-Beam Spectrometers......Page 220
Array Spectrophotometers......Page 221
6.5 Monochromators: Prisms, Gratings, and the Location of Wavelength Dispersion Components......Page 222
Profile—Building a Monochromator......Page 223
Deuterium Arc/Tungsten Halogen Bulb......Page 224
Xenon Arc Lamps......Page 225
The Photomultiplier Tube......Page 226
Profile—The Jaz by Ocean Optics......Page 227
Photovoltaic Cells......Page 228
Charge Coupled Devices......Page 229
Activity—Absorbance and Stray Light......Page 230
Profile—Walter Hermann Schottky......Page 231
6.9 Kinetic Ultraviolet-Visible Techniques......Page 232
Stop Flow Ultraviolet-Visible Studies......Page 233
Flash Photolysis......Page 235
6.10 Useful Data......Page 237
Exercises......Page 238
Advanced Exercises......Page 239
Chapter 7. Atomic Absorption Spectroscopy......Page 241
Profile—The Birth of Atomic Absorption Spectroscopy......Page 242
7.1 Introduction......Page 243
7.2 Molecular versus Atomic Absorption......Page 245
Lifetime Broadening......Page 246
Magnetic Field Broadening......Page 248
Pressure Broadening......Page 250
Doppler Broadening......Page 251
The Hollow-Cathode Lamp......Page 252
Profile—Nutritional Contents of Breast Milk......Page 253
Electrodeless Discharge Lamps......Page 254
Activity—Soil Analysis......Page 255
Flame Atomic Absorption Spectroscopy......Page 256
Electrothermal Atomic Absorption Spectroscopy/ Graphite Furnace Atomic Absorption Spectroscopy......Page 260
Flame versus Electrothermal Atomic Absorption Spectroscopy......Page 261
Hydride Atomic Absorption Spectroscopy......Page 262
Cold Vapor Atomic Absorption Spectroscopy......Page 263
7.6 Measuring Atomic Absorption......Page 264
Profile—Demystifying the Zeeman Effect......Page 265
Smith-Hieftje Background Correction......Page 267
Chemical Interferences......Page 268
Acid Digestion......Page 271
7.8 Performing an Atomic Absorption Spectroscopy Analysis......Page 272
Further Reading......Page 274
Exercises......Page 275
Chapter 8. Luminescence Spectroscopy......Page 277
8.1 Introduction......Page 278
8.2 Theory......Page 279
Fluorescence Quantum Yield and Time Decay of Fluorescence......Page 283
Factors that Determine Fluorescence Intensity......Page 285
Profile—Is Your $100 Bill Real? Find Out with Time-Resolved Fluorescence......Page 286
Stern-Volmer Quenching......Page 287
Relating Fluorescence and Molecular Structure......Page 290
Profile—Fluorescence Quenching Helps with Aerodynamics......Page 291
Steady-State Luminescence and Time-Resolved Luminescence Measurements......Page 293
Excitation Source......Page 294
Wavelength Discrimination and Instrument Resolution......Page 295
Detectors for Luminescence......Page 297
Excitation Spectra: An Additional Measurement Mode......Page 298
Sample Introduction......Page 300
Source Intensity Corrections......Page 301
Photobleaching......Page 302
Profile—Fluorescence Pushes the Limits of Detection: Femtomolar and Single Molecule Detection......Page 303
Chemiluminescence......Page 304
Resonance Energy Transfer Spectroscopy......Page 305
Multiphoton Excitation......Page 307
Further Reading......Page 308
Exercises......Page 309
Chapter 9. Atomic Emission Spectroscopy......Page 311
9.1 Introduction......Page 312
9.2 The Atomizer and the Excitation Source......Page 314
Profile—Columbia......Page 315
Inductively Coupled Plasma Torch......Page 317
Direct Current Plasma Source......Page 318
Profile—The Plasma Torch......Page 319
Microwave-Induced Plasma Source......Page 320
Laser-Induced Plasma......Page 321
Profile—Laser-Induced Breakdown Spectroscopy in Space......Page 322
9.3 Sample Introduction......Page 323
Sample Preparation and Interferences......Page 324
Zeeman Background Correction......Page 325
9.4 Measuring Atomic Emission......Page 326
Compare and Contrast—Flame Atomic Absorption Spectroscopy, Graphite Furnace Atomic Absorption Spectroscopy, and Inductively Coupled Plasma–Atomic Emission Spectroscopy......Page 327
Further Reading......Page 328
Advanced Exercises......Page 329
Chapter 10. X-ray–Related Techniques......Page 331
10.1 Principles of X-ray Fluorescence Spectroscopy......Page 332
Profile—W. C. Röntgen......Page 333
X-ray Fluorescence Transitions: Terminology......Page 334
Photoelectric Absorption......Page 335
Absorption of X-rays......Page 336
Compare and Contrast—Optical Absorption versus Photoelectric Absorption......Page 337
Radioisotopes......Page 339
X-ray Tubes......Page 340
Synchrotron Radiation......Page 343
10.3 X-ray Optics......Page 344
Reflection Optics......Page 345
Profile—X-ray Fluorescence Analysis of a Fifteenth-Century Painting......Page 346
Diffraction Optics......Page 347
Sequential and Simultaneous......Page 350
Profile—Lost Painting by Vincent van Gogh......Page 351
Wavelength-Dispersive X-ray Fluorescence Detectors......Page 353
10.5 Energy-Dispersive Spectrometers......Page 354
Energy-Dispersive X-ray Fluorescence Detectors......Page 355
10.6 Direct Comparison: Wavelength-Dispersive and Energy-Dispersive X-ray Fluorescence Spectroscopy......Page 358
10.8 Total Reflection X-ray Fluorescence......Page 360
X-ray–Induced Photoelectron Spectroscopy......Page 361
Compare and Contrast—XRF, XPS, & AS......Page 362
Auger Electron Spectroscopy......Page 363
10.10 Single Crystal X-ray Diffractometry......Page 364
Scatter......Page 366
Profile—Christiaan Huygens......Page 367
Bragg’s Law......Page 368
The Lattice......Page 370
Obtaining a Crystal Structure......Page 374
The Diffractometer......Page 376
Further Reading......Page 377
Exercises......Page 378
Advanced Exercises......Page 379
Chapter 11. Infrared Spectroscopy......Page 381
Profile—Forensics and Fourier Transform Infrared Spectroscopy......Page 382
11.1 Chemical Structure and Molecular Vibrations......Page 383
Wave Numbers and the Infrared Spectral Region......Page 384
Group Frequencies......Page 385
Normal Modes......Page 387
Vibrational Categories......Page 388
Profile—Olive Oil......Page 389
The Selection Rule and Molecular Symmetry......Page 390
Activity—Just for Fun......Page 391
11.2 Time Domain versus Frequency Domain Spectroscopy: The Fourier Transformation......Page 393
Activity—Performing a Fourier Transform......Page 395
The Michelson Interferometer......Page 397
Resolution......Page 399
Activity—Exploring Resolution......Page 400
11.4 Sources......Page 401
The Globar......Page 403
Solid-State Sources......Page 404
Pyroelectric Detectors......Page 405
Quantum Well Detectors......Page 407
Quantitative Measurements and Deviations from Beer’s Law......Page 408
11.7 Developments: Two-Dimensional Infrared Spectroscopy......Page 410
Optical Materials......Page 411
Gases......Page 412
Solution Infrared Spectroscopy......Page 413
Solids......Page 415
Attenuated Total Ref lection......Page 416
Further Reading......Page 418
Advanced Exercises......Page 419
Chapter 12. Raman Spectroscopy......Page 421
Profile—Raman Applications in Art and Medicine......Page 422
12.1 Introduction......Page 423
Rayleigh Scattering......Page 424
12.2 Theory of Raman Scattering......Page 425
Selection Rules......Page 429
Vibrations in the Linear Molecule Carbon Dioxide (CO2): A Case Study......Page 432
Raman Spectroscopy of the Tetrahedral Molecule Carbon Tetrachloride (CCl4): A Case Study......Page 435
Radiant Source......Page 438
Filters......Page 441
Detectors......Page 442
Compare and Contrast—A Side-by-Side Evaluation of Fourier Transform Infrared and Raman Spectroscopy......Page 444
Fiber Optic Probes......Page 445
Profile—Drug Detection Using Handheld Raman Instrument......Page 446
Raman Imaging......Page 447
Polarized Raman Spectroscopy......Page 449
Fourier Transform–Raman Spectroscopy......Page 451
Profile—Using Raman Spectroscopy to Identify Compounds from a Distance......Page 452
Further Reading......Page 453
Advanced Exercises......Page 454
Chapter 13. Mass Spectrometry......Page 457
Profile—Puffer MS......Page 458
13.2 Ion Sources......Page 460
Electron Ionization......Page 462
Profile—J. J. Thomson......Page 463
Chemical Ionization......Page 467
Electrospray Ionization......Page 470
Matrix-Assisted Laser Desorption Ionization......Page 472
Secondary Ion Ionization......Page 473
Inductively Coupled Plasma Ionization......Page 475
13.3 Mass Analyzers......Page 478
Resolution......Page 479
Sector and Double-Focusing Mass Analyzer......Page 480
Profile—Eugen Goldstein......Page 482
Quadrupole Mass Analyzer......Page 484
Time-of-Flight Mass Analyzer......Page 485
Fourier Transform Ion Cyclotron Resonance......Page 488
Quadrupole Ion Trap Mass Analyzer......Page 490
13.4 Detectors......Page 491
Tandem Techniques......Page 493
Accelerator Mass Spectrometry......Page 494
Profile—The Isotope 10Be as a Geological Clock......Page 495
Profile—Human Scent Fingerprinting......Page 496
Exercises......Page 497
Advanced Exercises......Page 498
Chapter 14. An Introduction to Nuclear Magnetic Resonance Spectroscopy......Page 501
14.1 Introduction......Page 502
Profile—Spectral Analysis: A Quick Review......Page 504
Nuclear Quantum Numbers......Page 505
A Nucleus in a Magnetic Field......Page 506
14.3 The Nuclear Magnetic Resonance Signal......Page 509
Compare and Contrast—Population Distribution for Common Spectroscopic Methods......Page 513
14.4 The Radiofrequency Pulse: Inducing Nuclear Magnetic Resonance......Page 514
Fourier Transform–Nuclear Magnetic Resonance: Time Domain versus Frequency Domain Spectroscopy and the Fourier Transformation......Page 516
Free Induction Decay: The Fourier Transform– Nuclear Magnetic Resonance “Beat Pattern”......Page 517
14.5 Chemical Shift and Resolution......Page 518
The Chemical Shift (ppm)......Page 519
Resolution......Page 521
14.6 The Instrument......Page 522
Loading......Page 523
14.7 Signal Processing......Page 524
Increasing the Signal-to-Noise Ratio......Page 525
Profile—Angela Gronenborn......Page 526
14.8 Magnetic Resonance Imaging......Page 527
Profile—Magnetic Resonance Imaging and Brain Concussion......Page 528
Profile—Magnetic Resonance Imaging Has a Fascinating Backstory......Page 529
Further Reading......Page 532
Exercises......Page 533
Chapter 15. Liquid Chromatography......Page 535
15.1 Introduction......Page 536
Distribution Equilibrium......Page 537
Principles of Chromatography......Page 540
Activity—Chromatography at Home......Page 542
The Retention Factor......Page 543
Resolution and Theoretical Plates......Page 545
Band Broadening......Page 550
Thermodynamic and Kinetic Factors......Page 553
Isocratic versus Gradient Elution......Page 555
Quantitative versus Qualitative Analysis......Page 556
Profile—Analysis of Wine: Qualitative and Quantitative......Page 559
Profile—Liquid Chromatography–Mass Spectroscopy in Athletic Doping......Page 560
Reversed Phase Chromatography......Page 563
Hydrophilic Interaction Chromatography......Page 565
Chiral Chromatography......Page 566
Size Exclusion Chromatography......Page 567
Overview......Page 569
High-Performance Liquid Chromatography Components......Page 570
Mobile Phase......Page 571
Columns......Page 572
Injectors......Page 573
Pumps......Page 574
Detectors......Page 575
Profile—Major Players in the Analytical Industry......Page 577
Further Reading......Page 578
Exercises......Page 579
Chapter 16. Gas Chromatography......Page 583
16.1 Introduction......Page 584
Profile—Gas Chromatography on Mars......Page 587
16.2 Basic Gas Chromatography Instrument Design......Page 589
Peanut Butter: A Case Study......Page 590
The Column......Page 593
Profile—The NIST 14 Gas Chromatography Library with Search Software......Page 594
Profile—Erika Cremer......Page 596
Carrier Gases......Page 601
16.6 Detectors......Page 603
Ionizing Detectors......Page 604
Optical Detectors......Page 605
Atomic Emission Detectors......Page 606
Thermal Conductivity Detectors......Page 607
Tandem Instrument Detection......Page 608
Quantitative and Qualitative Considerations......Page 610
Multidimensional Gas Chromatography Techniques......Page 611
Miniaturization, Portability, Speed, and Throughput......Page 612
Profile—Breath and Air Quality......Page 613
Evaluation of the Gas Chromatography Separation......Page 615
The General Elution Problem: Review of Resolution and Band Broadening......Page 619
Exercises......Page 622
Advanced Exercises......Page 623
Chapter 17. Electrophoresis......Page 625
Profile—The Father of Electrophoresis......Page 626
17.2 Fundamental Principles......Page 627
17.3 The Basic Apparatus......Page 633
17.4 Paper Electrophoresis......Page 635
Activity—Demystifying Electrophoresis: Build Your Own Electrophoresis Apparatus......Page 636
Polyacrylamide Gel Electrophoresis......Page 637
Sodium Dodecyl Sulfate Polyacrylamide Gel Electrophoresis......Page 640
17.6 Ending the Analysis: The Time Factor......Page 641
Visualization......Page 642
Quantitative Electrophoresis......Page 644
Discontinuous Electrophoresis......Page 646
Isoelectric Focusing......Page 648
Two-Dimensional Electrophoresis......Page 649
The Instrument......Page 650
Profile—Capillary Electrophoresis and the Human Genome Project......Page 651
Separation Efficiency......Page 652
Electro-osmotic Flow......Page 653
Profile—Micellar Electrokinetic Capillary Chromatography......Page 656
Sample Loading and Throughput......Page 657
Dynamic Coating......Page 658
Detection......Page 659
Recent Developments in Capillary Electrophoresis......Page 661
Compare and Contrast—A Look Back at Five Different Separation Techniques......Page 662
Further Reading......Page 663
Exercises......Page 664
Chapter 18 Potentiometry and Probes......Page 667
18.1 Basic Principles: Probes and Biosensors......Page 668
18.2 Potentiometric Probes......Page 674
Profile—The Standard Hydrogen Electrode......Page 675
The pH Probe......Page 677
Profile—Nanoscale pH Probe for In Vivo Use......Page 681
The Nitrate Probe......Page 682
The Oxygen Probe......Page 683
18.3 Nonpotentiometric Probes......Page 684
The Dissolved Oxygen Probe......Page 685
The Chloride Probe......Page 686
The Total Salinity Probe......Page 688
The Glucose Probe: A Biosensor......Page 690
Profile—Percentage of Adults Treated for Diabetes Nearly Doubled in a Decade......Page 692
The Alcohol Fuel Cell Probe......Page 693
Profile—“Smart” Toilets: Intelligent Toilets that Monitor Your Health......Page 694
Exercises......Page 695
Chapter 19 Analytical Voltammetry......Page 697
19.1 Basic Principles......Page 698
Profile—Parsing Method Names......Page 700
19.2 The Three-Electrode Cell......Page 701
The Experiment......Page 703
Charging Current......Page 705
Mass Transport......Page 706
Profile—VX Probe......Page 707
Controlling Mass Transport......Page 708
The Cottrell Equation......Page 709
Profile—The International Space Station......Page 710
Background......Page 712
The Experiment......Page 713
Reversibility......Page 715
Quantitative Analysis with Cyclic Voltammetry: The Randles-Sevcik Equation......Page 717
Qualitative Analysis with Cyclic Voltammetry......Page 720
Solvents, Electrolytes, and the Electrochemical Window......Page 725
19.5 Square Wave Voltammetry......Page 726
Ultramicroelectrodes and Nanoelectrodes......Page 730
Compare and Contrast— Instrumental Costs......Page 733
Profile—Cyclic Voltammetry in a Single Cell......Page 734
19.7 Useful Data......Page 735
Exercises......Page 737
Chapter 20. Material and Surface Analysis Techniques......Page 739
Profile—Characterizing Metal Nanoparticles for Water Purification: Electron Microscopy in Action......Page 740
20.2 Microscopy......Page 741
Profile—Microscopy and the Nobel Prize in Physics......Page 742
Atomic Force Microscopy......Page 743
Scanning Tunneling Microscopy......Page 745
Profile—Controlling the Shape of Silver Nanoparticles with pH: Atomic Force Microscopy in Action......Page 746
Transmission Electron Microscopy and Scanning Electron Microscopy......Page 748
Compare and Contrast—Resolutions for Different Microscopy Techniques......Page 754
Profile—Thermogravimetric Analysis......Page 755
Thermogravimetric Analysis......Page 757
Differential Scanning Calorimetry......Page 758
Compare and Contrast—Differential Thermal Analysis, Thermogravimetric Analysis, and Differential Scanning Calorimetry......Page 760
Profile—A Crime Scene Analysis......Page 761
20.4 Mechanical Stress Analysis......Page 763
Dynamic Mechanical Analysis......Page 764
Exercises......Page 766
Chapter 21. Understanding the Nuclear Magnetic Resonance Experiment......Page 769
Profile—Adriaan “Ad” Bax......Page 770
Relaxation of the Excited State......Page 774
Longitudinal Relaxation (Spin-Lattice): T1......Page 777
Measuring T1: Inversion Recovery......Page 778
Transverse Relaxation (Spin-Spin): T2......Page 781
Measuring T2: Spin-Echo......Page 782
21.4 The Influence of Nuclear Neighbors......Page 784
J-Coupling......Page 785
Dipolar Coupling and the Nuclear Overhauser Effect......Page 789
Profile—Albert W. Overhauser......Page 790
Profile—Jean Jeener......Page 792
21.5 Introduction to Two-Dimensional Nuclear Magnetic Resonance......Page 793
Correlation Spectroscopy and Total Correlation Spectroscopy......Page 794
Nuclear Overhauser Effect Spectroscopy......Page 797
Profile—G. Marius Clore......Page 800
Variable Temperature Nuclear Magnetic Resonance......Page 801
Solid-State Nuclear Magnetic Resonance......Page 802
Other Spin-Active Nuclei......Page 805
21.7 Useful Data......Page 809
Further Reading......Page 810
Exercises......Page 811
Chapter 22. Statistical Data Analysis......Page 813
Gross Error......Page 814
22.3 Precision versus Accuracy......Page 815
Population versus Sample......Page 816
Standard Deviation and Variance......Page 817
Activity—Using Microsoft Excel to Generate a Mean and Standard Deviation......Page 818
Standard Error and Error Bars......Page 819
Normal Distributions......Page 820
Activity—Random Number Generation and Plotting a Histogram in Microsoft Excel......Page 822
Confidence Limits......Page 824
Activity—Using Microsoft Excel to Calculate Confidence Limits......Page 826
Propagation of Error......Page 827
Identifying Outliers: Q-Test......Page 829
Identifying Outliers: Grubbs’ Test......Page 831
Analyzing Variance: F-Tests......Page 832
22.5 Linear Regression Analysis......Page 835
Activity—Letting Microsoft Excel Perform ANOVA......Page 836
Activity—Letting Microsoft Excel Perform LINEST to Give Linear Regression Data......Page 839
22.6 Limit of Detection, Limit of Quantitation, and Linear Dynamic Range......Page 841
Activity—Using Microsoft Excel to Add a Trend Line to a Data Set......Page 842
Exercises......Page 845
Advanced Exercises......Page 846
Appendix: Table of Abbreviations and Acronyms......Page 847
Credits......Page 855
Index......Page 861