دسترسی نامحدود
برای کاربرانی که ثبت نام کرده اند
برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید
در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید
برای کاربرانی که ثبت نام کرده اند
درصورت عدم همخوانی توضیحات با کتاب
از ساعت 7 صبح تا 10 شب
ویرایش: [2 ed.] نویسندگان: Hirofumi Akagi, Edson Hirokazu Watanabe, Mauricio Aredes سری: ISBN (شابک) : 9781118362105 ناشر: Wiley-IEEE Press سال نشر: 2017 تعداد صفحات: 472 [464] زبان: English فرمت فایل : PDF (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود) حجم فایل: 26 Mb
در صورت ایرانی بودن نویسنده امکان دانلود وجود ندارد و مبلغ عودت داده خواهد شد
در صورت تبدیل فایل کتاب Instantaneous Power Theory and Applications to Power Conditioning به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.
توجه داشته باشید کتاب تئوری توان لحظه ای و کاربردها در تهویه نیرو نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.
این کتاب تئوری توان لحظه ای و همچنین اهمیت طراحی فیلترهای فعال قدرتی شنت، سری و ترکیبی فیلترهای قدرت غیرفعال-فعال ترکیبی و فیلترهای قدرت غیرفعال-فعال ترکیبی را پوشش می دهد. نظریه ها نظریه p-q-r را بررسی می کند تا روش جدیدی برای تجزیه و تحلیل توان های مختلف در یک مدار سه فاز ارائه دهد.
This book covers instantaneous power theory as well as the importance of design of shunt, series, and combined shunt-series power active filters and hybrid passive-active power filters Illustrates pioneering applications of the p-q theory to power conditioning, which highlights distinct differences from conventional theories Explores p-q-r theory to give a new method of analyzing the different powers in a three-phase circuit Provides exercises at the end of many chapters that are unique to the second edition
INSTANTANEOUS POWER THEORY AND APPLICATIONS TO POWER CONDITIONING Copyright CONTENTS PREFACE 1 INTRODUCTION 1.1. CONCEPTS AND EVOLUTION OF ELECTRIC POWER THEORY 1.2. APPLICATIONS OF THE p-q THEORY TO POWER ELECTRONICS EQUIPMENT 1.3. HARMONIC VOLTAGES IN POWER SYSTEMS 1.4. IDENTIFIED AND UNIDENTIFIED HARMONIC-PRODUCING LOADS 1.5. HARMONIC CURRENT AND VOLTAGE SOURCES 1.6. BASIC PRINCIPLES OF HARMONIC COMPENSATION 1.7. BASIC PRINCIPLE OF POWER FLOW CONTROL REFERENCES 2 ELECTRIC POWER DEFINITIONS: BACKGROUND 2.1. POWER DEFINITIONS UNDER SINUSOIDAL CONDITIONS 2.2. VOLTAGE AND CURRENT PHASORS AND COMPLEX IMPEDANCE 2.3. COMPLEX POWER AND POWER FACTOR 2.4. CONCEPTS OF POWER UNDER NONSINUSOIDAL CONDITIONS: CONVENTIONAL APPROACHES 2.4.1. Power Definitions by Budeanu 2.4.1.A. Power Tetrahedron and Distortion Factor 2.4.2. Power Definitions by Fryze 2.5. ELECTRIC POWER IN THREE-PHASE SYSTEMS 2.5.1. Classifications of Three-Phase Systems 2.5.2. Power in Balanced Three-Phase Systems 2.5.3. Power in Three-Phase Unbalanced Systems 2.6. SUMMARY 2.7. EXERCISES REFERENCES 3 THE INSTANTANEOUS POWER THEORY 3.1. BASIS OF THE p-q THEORY 3.1.1. Historical Background of the p-q Theory 3.1.2. The Clarke Transformation 3.1.2.A. Calculation of Voltage and Current Vectors When Zero-Sequence Components Are Excluded 3.1.3. Three-Phase Instantaneous Active Power in Terms of Clarke Components 3.1.4. The Instantaneous Powers of the p-q Theory 3.2. THE p-q THEORY IN THREE-PHASE, THREE-WIRE SYSTEMS 3.2.1. Comparisons with the Conventional Theory 3.2.1.A. Example #1—Sinusoidal Voltages and Currents 3.2.1.B. Example #2—Balanced Voltages and Capacitive Loads 3.2.1.C. Example #3—Sinusoidal Balanced Voltage and Nonlinear Load 3.2.2. Use of the p-q Theory for Shunt Current Compensation 3.2.2.A. Examples of Appearance of Hidden Currents 3.2.3. The Dual p-q Theory 3.3. THE p-q THEORY IN THREE-PHASE, FOUR-WIRE SYSTEMS 3.3.1. The Zero-Sequence Power in a Three-Phase SinusoidalVoltage Source 3.3.2. Presence of Negative-Sequence Components 3.3.3. General Case Including Distortions and Imbalances in the Voltages and in the Currents 3.3.4. Physical Meanings of the Instantaneous Real, Imaginary, and Zero-Sequence Powers 3.3.5. Avoiding the Clarke Transformation in the p-q Theory 3.3.6. Modified p-q Theory 3.4. INSTANTANEOUS abc THEORY 3.4.1. Active and Nonactive Current Calculation by Meansof a Minimization Method 3.4.2. Generalized Fryze Currents Minimization Method 3.5. COMPARISONS BETWEEN THE p-q THEORY AND THE abc THEORY 3.5.1. Selection of Power Components to be Compensated 3.6. THE p-q-r THEORY 3.7. SUMMARY 3.8. EXERCISES REFERENCES 4 SHUNT ACTIVE FILTERS 4.1. GENERAL DESCRIPTION OF SHUNT ACTIVE FILTERS 4.1.1. PWM Converters for Shunt Active Filters 4.1.2. Active Filter Controllers 4.2. THREE-PHASE, THREE-WIRE SHUNT ACTIVE FILTERS 4.2.1. Active Filters for Constant Power Compensation 4.2.2. Active Filters for Sinusoidal Current Control 4.2.2.A. Positive-Sequence Voltage Detector 4.2.2.B. Simulation Results 4.2.3. Active Filters for Current Minimization 4.2.4. Active Filters for Harmonic Damping 4.2.4.A. Shunt Active Filter Based on Voltage Detection 4.2.4.B. Active Filter Controller Based on Voltage Detection 4.2.4.C. An Application Case of an Active Filter for Harmonic Damping 4.2.5. A Digital Controller 4.2.5.A. System Configuration of the Digital Controller 4.2.5.B. Current Control Methods 4.3. THREE-PHASE, FOUR-WIRE SHUNT ACTIVE FILTERS 4.3.1. Converter Topologies for Three-Phase, Four-Wire Systems 4.3.2. Dynamic Hysteresis-Band Current Controller 4.3.3. Active Filter dc Voltage Regulator 4.3.4. Optimal Power Flow Conditions 4.3.5. Constant Instantaneous Power Control Strategy 4.3.6. Sinusoidal Current Control Strategy 4.3.7. Performance Analysis and Parameter Optimization 4.3.7.A. Influence of the System Parameters 4.3.7.B. Dynamic Response of the Shunt Active Filter 4.3.7.C. Economical Aspects 4.3.7.D. Experimental Results 4.4. COMPENSATION METHODS BASED ON THE p-q-r THEORY 4.4.1. Reference Power Control Method 4.4.2. Reference Current Control Method 4.4.3. Alternative Control Method 4.4.4. The Simplified Sinusoidal Source Current Strategy 4.4.4.A. The PLL Circuit and the Positive-Sequence Detector 4.4.4.B. The Sinusoidal Source Current Control Strategy with Energy Balance Inside the Active Filter 4.5. COMPARISONS BETWEEN CONTROL METHODS BASED ON THE p-q THEORY AND THE p-q-r THEORY 4.6. SHUNT SELECTIVE HARMONIC COMPENSATION 4.7. SUMMARY 4.8. EXERCISES REFERENCES 5 HYBRID AND SERIES ACTIVEFILTERS 5.1. BASIC SERIES ACTIVE FILTER 5.2. COMBINED SERIES ACTIVE FILTER AND SHUNT PASSIVE FILTER 5.2.1. Example of an Experimental System 5.2.1.A. Compensation Principle 5.2.1.B. Filtering Characteristics 5.2.1.C. Control Circuit 5.2.1.D. Filter to Suppress Switching Ripples 5.2.1.E. Experimental Results 5.2.2. Some Remarks about the Hybrid Filters 5.3. SERIES ACTIVE FILTER INTEGRATED WITH A DOUBLE-SERIES DIODE RECTIFIER 5.3.1. The First-Generation Control Circuit 5.3.1.A. Circuit Configuration and Delay Time 5.3.1.B. Stability of the Active Filter 5.3.2. The Second-Generation Control Circuit 5.3.3. Stability Analysis and Characteristics Comparison 5.3.3.A. Transfer Function of the Control Circuits 5.3.3.B. Characteristics Comparisons 5.3.4. Design of a Switching-Ripple Filter 5.3.4.A. Design Principle 5.3.4.B. Effect on the System Stability 5.3.4.C. Experimental Testing 5.3.5. Experimental Results 5.4. COMPARISONS BETWEEN HYBRID AND PURE ACTIVE FILTERS 5.4.1. Low-Voltage Transformerless Hybrid Active Filter 5.4.2. Low-Voltage, Transformerless, Pure Shunt Active Filter 5.4.3. Comparisons through Simulation Results 5.5. HYBRID ACTIVE FILTERS FOR MEDIUM-VOLTAGE MOTOR DRIVES 5.5.1. Hybrid Active Filter for a Three-Phase Six-Pulse Diode Rectifier 5.5.1.A. System Configuration 5.5.1.B. Experimental System 5.5.1.C. Control System 5.5.1.D. Common Sixth-Harmonic Zero-Sequence Voltage Injection 5.5.1.E. Three-Phase Second-Harmonic Negative Sequence Voltages Injection 5.5.1.F. Experimental Results 5.5.1.G. Appendix 5.5.2. Hybrid Active Filter for a Three-Phase 12-Pulse Diode Rectifier 5.5.2.A. Medium-Voltage High-Power Motor Drive Systems 5.5.2.B. Experimental System 5.5.2.C. Control System 5.5.2.D. Three-Phase Second-Harmonic Negative Sequence Voltages Injection 5.5.2.E. Experimental Results 5.5.2.F. Overall System Efficiency 5.6. SUMMARY 5.7. EXERCISES REFERENCES 6 COMBINED SERIES AND SHUNT POWER CONDITIONERS 6.1. THE UNIFIED POWER FLOW CONTROLLER 6.1.1. FACTS and UPFC Principles 6.1.1.A. Voltage Regulation Principle 6.1.1.B. Power Flow Control Principle 6.1.2. A Controller Design for the UPFC 6.1.3. UPFC Approach Using a Shunt Multipulse Converter 6.1.3.A. Six-Pulse Converter 6.1.3.B. Quasi 24-Pulse Converter 6.1.3.C. Control of Active and Reactive Power in Multipulse Converters 6.1.3.D. Shunt Multipulse Converter Controller 6.2. THE UNIFIED POWER QUALITY CONDITIONER 6.2.1. General Description of the UPQC 6.2.2. A Three-Phase, Four-Wire UPQC 6.2.2.A. Power Circuit of the UPQC 6.2.2.B. The UPQC Controller 6.2.2.C. Analysis of the UPQC Dynamic 6.2.3. The UPQC Combined with Passive Filters (the Hybrid UPQC) 6.2.3.A. Controller of the Hybrid UPQC 6.2.3.B. Experimental Results 6.3. THE UNIVERSAL ACTIVE POWER LINE CONDITIONER 6.3.1. General Description of the UPLC 6.3.2. The Controller of the UPLC 6.3.2.A. Controller for Configuration #2 of the UPLC 6.3.3. Performance of the UPLC 6.3.3.A. Normalized System Parameters 6.3.3.B. Simulation Results of Configuration #1 of the UPLC 6.3.3.C. Simulation Results of Configuration #2 of the UPLC 6.3.4. General Aspects 6.4. COMBINED SHUNT-SERIES FILTERS FOR AC AND DC SIDES OF THREE-PHASE RECTIFIERS 6.4.1. The Combined Shunt-Series Filter 6.4.2. Instantaneous Real and Imaginary Powers in the ac Source 6.4.3. The Instantaneous Power in the dc Side of the Rectifier 6.4.4. Comparison of Instantaneous Powers on the ac and dc Sides of the Rectifier 6.4.5. Control Algorithm of the Active Shunt-Series Filter 6.4.6. The Common dc Link 6.4.7. Digital Simulation 6.4.8. Experimental Results 6.5. SUMMARY 6.6. EXERCISES REFERENCES INDEX