دسترسی نامحدود
برای کاربرانی که ثبت نام کرده اند
برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید
در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید
برای کاربرانی که ثبت نام کرده اند
درصورت عدم همخوانی توضیحات با کتاب
از ساعت 7 صبح تا 10 شب
ویرایش: [1 ed.] نویسندگان: Hussain. Kameron, Hussain. Frahaan سری: ناشر: Sonar Publishing سال نشر: 2024 تعداد صفحات: 326 زبان: English فرمت فایل : EPUB (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود) حجم فایل: 504 Kb
در صورت ایرانی بودن نویسنده امکان دانلود وجود ندارد و مبلغ عودت داده خواهد شد
در صورت تبدیل فایل کتاب Inside the Code: Unraveling How Languages Like C, C++, Java, JavaScript, and Python Work به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.
توجه داشته باشید کتاب درون کد: کشف نحوه کار زبان هایی مانند C، C، جاوا، جاوا اسکریپت و پایتون نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.
Chapter 1: The Essence of Programming Languages 1.1 Understanding Programming Language Fundamentals 1.2 Evolution of Programming Languages 1.3 Common Features of C, C++, Java, JavaScript, and Python 1.4 High-Level vs. Low-Level Languages 1.5 The Role of a Compiler and Interpreter Chapter 2: Decoding C: The Ancestor of Modern Languages 2.1 The Birth and Philosophy of C 2.2 Structure of a C Program 2.3 Memory Management in C 2.4 C’s Contribution to Operating Systems and Software 2.5 Limitations and Legacy of C Chapter 3: C++: Bridging Procedural and Object-Oriented Programming 3.1 The Evolution from C to C++ 3.2 Core Concepts of Object-Oriented Programming in C++ 3.3 Memory Management: From Malloc to Constructors 3.4 The Standard Template Library (STL) 3.5 Real-world Applications of C++ Chapter 4: Java: Write Once, Run Anywhere 4.1 Java’s Answer to Cross-Platform Compatibility 4.2 Understanding Java Virtual Machine (JVM) 4.3 Object-Oriented Principles in Java 4.4 Garbage Collection in Java 4.5 Java in Enterprise Solutions Chapter 5: JavaScript: The Language of the Web 5.1 From Simple Scripts to Rich Web Applications 5.2 Understanding the DOM and Browser Rendering 5.3 Event-Driven Programming in JavaScript 5.4 Asynchronous Programming and Callbacks 5.5 The Rise of Node.js and Server-Side JavaScript Chapter 6: Python: The Language of Simplicity and Elegance 6.1 Python’s Philosophy and Design Principles 6.2 Python’s Interpreter and Dynamic Typing Interactive Mode Script Execution Dynamic Typing Strong Typing Summary 6.3 Libraries and Frameworks in Python Standard Library NumPy Pandas Matplotlib Flask Django 6.4 Python in Data Science and AI Data Science with Python AI and Machine Learning Jupyter Notebooks Conclusion 6.5 Scripting, Automation, and Web Development with Python Scripting Automation Web Development Conclusion 7.1 Understanding Syntax in Programming Languages Importance of Syntax Syntax Elements 1. Keywords 2. Operators 3. Variables 4. Statements 5. Brackets and Delimiters Language-Specific Syntax Syntax Errors Conclusion 7.2 The Role of Semantics in Code Execution Understanding Semantics Key Aspects of Semantics Language-Specific Semantics Handling Semantic Errors Importance of Semantics 7.3 Comparing Syntax Across Different Languages Syntax Diversity Benefits of Syntax Diversity Challenges of Syntax Diversity Cross-Language Development 7.4 Error Handling and Debugging Error Handling Debugging Challenges and Best Practices 7.5 Best Practices for Readable and Maintainable Code 1. Meaningful Variable and Function Names 2. Consistent Indentation and Formatting 3. Comments and Documentation 4. Modularization 5. Avoid Magic Numbers and Hardcoding 6. Version Control and Collaboration 7. Unit Testing 8. Refactoring 9. Follow Language Best Practices Chapter 8: Data Types and Structures 8.1 Primitive Data Types Across Languages Integer Types Floating-Point Types Boolean Type Character Types Conclusion 8.2 Complex Data Structures and Their Implementation Arrays Lists (Dynamic Arrays) Linked Lists Conclusion 8.3 Memory Allocation for Data Types Stack and Heap Allocation Automatic vs. Manual Memory Management Garbage Collection Mechanisms Conclusion 8.4 Comparing Data Handling in C, C++, Java, JavaScript, and Python C C++ Java JavaScript Python 8.5 Efficient Data Manipulation Techniques C and C++ Java JavaScript Python General Tips Chapter 9: Control Structures and Flow 9.1 Understanding Conditional Statements The If Statement The Switch Statement The Ternary Operator Conditional Statements Best Practices 9.2 Loop Constructs Across Different Languages The For Loop The While Loop The Do-While Loop 9.3 Recursive Functions and Their Usage Recursive Functions in C and C++ Recursive Functions in Java Recursive Functions in JavaScript Recursive Functions in Python 9.4 Exception Handling and Flow Control Exception Handling in C++ Exception Handling in Java Exception Handling in JavaScript Exception Handling in Python 9.5 Writing Efficient and Effective Control Structures Optimizing Conditional Statements Loop Optimization Avoiding Nested Loops Using Break and Continue Judiciously Regular Code Reviews and Profiling Choosing the Right Data Structures Chapter 10: Object-Oriented Programming Across Languages 10.1 Core Concepts of OOP: Encapsulation, Inheritance, Polymorphism 1. Encapsulation 2. Inheritance 3. Polymorphism 10.2 Comparing OOP in C++, Java, and Python C++ Java Python 10.3 Design Patterns and Best Practices C++ Java Python 10.4 The Impact of OOP on Software Development Encapsulation and Modularity Inheritance and Code Reuse Polymorphism and Flexibility Encapsulation of State and Behavior Software Design Patterns Challenges and Criticisms 10.5 Challenges and Criticisms of OOP Complex Class Hierarchies Tight Coupling Overhead and Performance Difficulty in Learning Not Always the Best Fit Chapter 11: Functional Programming: A Paradigm Shift Section 11.1: Introduction to Functional Programming Advantages of Functional Programming Functional Features in Python and JavaScript Section 11.2: Functional Features in Python and JavaScript Python and Functional Programming JavaScript and Functional Programming Section 11.3: Comparing Imperative and Functional Approaches Imperative Programming Functional Programming When to Choose Each Approach Section 11.4: Use Cases for Functional Programming 1. Data Transformation and Processing 2. Parallel and Concurrent Programming 3. Complex Mathematical Calculations 4. Handling Streams and Events 5. Domain-Specific Languages (DSLs) Section 11.5: The Future of Functional Programming 1. Wider Adoption in Mainstream Languages 2. Functional-First Languages 3. Reactive and Event-Driven Systems 4. Advances in Type Systems 5. Functional for Data Science and AI 6. Functional in Blockchain and Smart Contracts Chapter 12: Memory Management Across Languages Section 12.1: Understanding Stack and Heap Allocation Stack Allocation Heap Allocation Choosing Between Stack and Heap Section 12.2: Automatic vs Manual Memory Management Automatic Memory Management (Garbage Collection) Manual Memory Management Choosing Between Approaches Section 12.3: Garbage Collection Mechanisms in Java and Python Garbage Collection in Java Garbage Collection in Python Section 12.4: Memory Leaks and Management in C and C++ Memory Leaks in C and C++ Management Strategies in C and C++ Section 12.5: Best Practices for Efficient Memory Usage 1. Use Stack Memory When Appropriate 2. Limit Dynamic Memory Allocation 3. Avoid Memory Leaks 4. Use RAII in C++ 5. Employ Smart Pointers (C++) 6. Profile and Optimize 7. Avoid Global Variables 8. Check Return Values of Allocation Functions 9. Release Resources in Error Handling Paths Chapter 13: Concurrency and Parallelism Section 13.1: Basics of Concurrency and Parallelism Concurrency Parallelism Section 13.2: Multithreading in Java and C++ Java Multithreading C++ Multithreading Section 13.3: Asynchronous Programming in JavaScript and Python Asynchronous Programming in JavaScript Asynchronous Programming in Python Section 13.4: Synchronization and Race Conditions Synchronization Mechanisms Race Conditions Section 13.5: Real-World Applications of Concurrent Programming 1. Web Servers 2. Video Game Engines 3. Database Systems 4. Operating Systems 5. Parallel Computing 6. Networking 7. Financial Systems 8. IoT (Internet of Things) 9. Video Streaming 10. Search Engines Chapter 14: Libraries, Frameworks, and APIs Section 14.1: The Role of Libraries in Software Development Section 14.2: Popular Frameworks for Web Development Section 14.3: API Integration and Management The Significance of API Integration API Management Popular API Management Tools Section 14.4: Cross-Language Compatibility and Bridging Why Cross-Language Compatibility Matters Techniques for Cross-Language Compatibility Challenges in Cross-Language Compatibility Section 14.5: Evaluating and Choosing the Right Tools The Importance of Tool Selection Evaluating Tools Making the Decision Chapter 15: Debugging and Testing Section 15.1: Principles of Effective Debugging 1. Reproduce the Issue 2. Understand the Code 3. Use Version Control 4. Start with Assertions 5. Divide and Conquer 6. Use Debugging Tools 7. Replicate the Environment 8. Keep a Log 9. Collaborate and Seek Help 10. Test Your Fixes 11. Document the Solution Section 15.2: Unit Testing and Test-Driven Development What is Unit Testing? Benefits of Unit Testing Test-Driven Development (TDD) Example of TDD Section 15.3: Debugging Tools and Techniques for Each Language Python Java C and C++ JavaScript Best Practices for Debugging Section 15.4: Integration and System Testing Integration Testing System Testing Best Practices for Integration and System Testing Section 15.5: Building a Robust Testing Framework Key Considerations for a Testing Framework Best Practices for Building a Testing Framework Example Testing Framework (Python with PyTest) Chapter 16: Version Control and Collaboration Section 16.1: Introduction to Version Control Systems What Is Version Control? Types of Version Control Systems Advantages of Version Control Systems Section 16.2: Collaborative Coding with Git Understanding Git Basics Collaborative Workflows Setting Up Git for Collaboration Section 16.3: Best Practices for Team Development 1. Clear and Consistent Code Style 2. Version Control Etiquette 3. Code Reviews 4. Automated Testing 5. Documentation 6. Use of Branching Strategies 7. Continuous Integration and Deployment (CI/CD) 8. Communication 9. Security Best Practices 10. Code Ownership and Responsibility 11. Continuous Learning 12. Feedback and Retrospectives Section 16.4: Code Reviews and Quality Assurance Why Code Reviews Matter Best Practices for Code Reviews Section 16.5: Managing Large Codebases Across Teams Challenges of Large Codebases Strategies for Managing Large Codebases Chapter 17: Optimization and Performance Tuning Section 17.1: Analyzing and Improving Code Performance The Importance of Code Performance Profiling and Analysis Optimization Strategies Continuous Monitoring and Testing Section 17.2: Profiling Tools and Techniques Types of Profiling Tools Profiling Techniques Profiling Best Practices Section 17.3: Memory Optimization Strategies 1. Data Structures Selection 2. Object Pooling 3. Lazy Loading 4. Memory-Mapped Files 5. Garbage Collection Optimization 6. Memory Profiling 7. Dispose of Resources Properly 8. Minimize Copying 9. Compact Data Structures 10. Monitoring and Profiling Section 17.4: Optimizing CPU Usage and Efficiency 1. Algorithm Selection 2. Data Structure Optimization 3. Caching 4. Multithreading and Parallelism 5. Profile and Optimize Hotspots 6. Batch Processing 7. Compiler and Language Features 8. Minimize I/O Operations 9. Use Lazy Evaluation Section 17.5: Balancing Readability and Performance 1. Code Comments and Documentation 2. Descriptive Variable and Function Names 3. Modularization 4. Code Formatting and Style Guides 5. Avoid Premature Optimization 6. Maintainability over Micro-Optimizations 7. Code Reviews 8. Testing and Test-Driven Development (TDD) 9. Code Refactoring Chapter 18: The Future of Programming Languages Section 18.1: Emerging Trends in Software Development 1. Machine Learning Integration 2. Quantum Computing Languages 3. WebAssembly (Wasm) 4. Rust for System-Level Programming 5. Domain-Specific Languages (DSLs) 6. Low-Code and No-Code Platforms 7. Concurrency and Parallelism 8. Ethical and Sustainable Programming 9. Continued Evolution of Existing Languages 10. Interoperability Section 18.2: The Evolution of Programming Paradigms 1. Procedural Programming 2. Object-Oriented Programming (OOP) 3. Functional Programming 4. Logic Programming 5. Event-Driven and Reactive Programming 6. Concurrent and Parallel Programming 7. Domain-Specific Languages (DSLs) 8. Low-Code and No-Code Paradigms 9. Hybrid Approaches Section 18.3: Predictions for C, C++, Java, JavaScript, and Python 1. C and C++ 2. Java 3. JavaScript 4. Python 5. Cross-Language Interoperability 6. The Impact of AI Section 18.4: The Role of AI in Programming 1. Automated Code Generation 2. Code Review and Quality Assurance 3. Bug Detection and Predictive Maintenance 4. Optimizing Code Performance 5. Natural Language Interfaces for Coding 6. Challenges and Ethical Considerations Section 18.5: Preparing for the Next Generation of Languages 1. Stay Informed 2. Learn Multiple Paradigms 3. Master Fundamentals 4. Experiment with New Languages 5. Open Source Contribution 6. Adopt Modern Development Practices 7. Cross-Platform Development 8. Consider Domain-Specific Languages (DSLs) 9. Ethical Considerations 10. Foster a Growth Mindset Section 19.1: Case Studies of Successful Projects in Each Language 1. Linux Kernel (C) 2. Facebook (PHP and Hack) 3. Netflix (Java) 4. Twitter (Scala) 5. Instagram (Python) 6. SpaceX (C++, Python) Section 19.2: Cross-Disciplinary Use of Programming Languages 1. Bioinformatics (Python and R) 2. Finance (Java and C++) 3. Geographic Information Systems (GIS) (Python and JavaScript) 4. Artificial Intelligence (AI) (Python and TensorFlow) 5. Digital Art (Processing and JavaScript) Section 19.3: Large-Scale Systems and Their Challenges 1. Scalability 2. Availability and Reliability 3. Data Management 4. Security and Privacy 5. Performance Optimization 6. Monitoring and Analytics 7. Cost Management 8. Maintainability and DevOps Section 19.4: Open Source Contributions and Community Impact 1. The Open Source Movement 2. Benefits of Open Source Contributions 3. Popular Open Source Projects 4. Contributing to Open Source 5. GitHub and Collaboration Platforms 6. Licensing and Legal Considerations 7. Community Etiquette 8. Impact of Open Source Section 19.5: Lessons Learned from Industry Giants 1. Continuous Learning and Adaptation 2. User-Centric Design 3. Iterative Development 4. Automation and DevOps 5. Data-Driven Decision Making 6. Scalability and Performance 7. Security and Privacy 8. Collaboration and Communication 9. Diversity and Inclusion 10. Ethical Considerations Chapter 20: The Programmer’s Journey: Learning and Mastering Languages Section 20.1: Strategies for Learning New Programming Languages 1. Start with Fundamentals 2. Choose the Right Language 3. Utilize Online Resources 4. Hands-On Practice 5. Work on Real Projects 6. Learn Language Features 7. Read Code and Documentation 8. Join Coding Communities 9. Experiment and Tinker 10. Teach Others 11. Stay Persistent and Patient 12. Stay Updated Section 20.2: Balancing Breadth and Depth in Language Proficiency Breadth: Exploring Multiple Languages Depth: Mastering a Single Language Section 20.3: Building a Personal Coding Portfolio Why Build a Coding Portfolio? How to Build an Effective Portfolio Section 20.4: Staying Current with Technological Advances 1. Continuous Learning 2. Follow Industry Trends 3. Attend Conferences and Meetups 4. Join Online Communities 5. Experiment with Side Projects 6. Read Books and Documentation 7. Online Courses and Tutorials 8. Contribute to Open Source 9. Follow Thought Leaders 10. Build a Personal Learning Plan 11. Embrace New Challenges 12. Network with Peers 13. Stay Inquisitive Section 20.5: Fostering a Lifelong Passion for Coding 1. Build Meaningful Projects 2. Collaborate with Others 3. Stay Curious 4. Teach and Mentor 5. Participate in Coding Challenges 6. Explore Different Domains 7. Read and Write Code Regularly 8. Attend Tech Events 9. Set Personal Goals 10. Celebrate Your Achievements 11. Stay Informed 12. Balance Work and Life 13. Join Coding Communities 14. Explore Creative Coding 15. Keep a Coding Journal