ورود به حساب

نام کاربری گذرواژه

گذرواژه را فراموش کردید؟ کلیک کنید

حساب کاربری ندارید؟ ساخت حساب

ساخت حساب کاربری

نام نام کاربری ایمیل شماره موبایل گذرواژه

برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید


09117307688
09117179751

در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید

دسترسی نامحدود

برای کاربرانی که ثبت نام کرده اند

ضمانت بازگشت وجه

درصورت عدم همخوانی توضیحات با کتاب

پشتیبانی

از ساعت 7 صبح تا 10 شب

دانلود کتاب Inorganic Chemistry

دانلود کتاب شیمی معدنی

Inorganic Chemistry

مشخصات کتاب

Inorganic Chemistry

ویرایش: 5 
نویسندگان:   
سری:  
ISBN (شابک) : 1292134143, 9781292134147 
ناشر: Pearson 
سال نشر: 2018 
تعداد صفحات: 0 
زبان: English 
فرمت فایل : PDF (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود) 
حجم فایل: 132 مگابایت 

قیمت کتاب (تومان) : 47,000



ثبت امتیاز به این کتاب

میانگین امتیاز به این کتاب :
       تعداد امتیاز دهندگان : 12


در صورت تبدیل فایل کتاب Inorganic Chemistry به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.

توجه داشته باشید کتاب شیمی معدنی نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.


توضیحاتی در مورد کتاب شیمی معدنی



اکنون در ویرایش پنجم، شیمی معدنی Housecroft & Sharpe، همچنان به ارائه مقدمه ای جذاب، واضح و جامع برای اصول اصلی فیزیکی- معدنی ادامه می دهد.

این کتاب درسی بسیار معتبر و مشهور بین المللی، شیمی توصیفی عناصر و نقش شیمی معدنی را در زندگی روزمره ما معرفی می کند. طراحی خیره کننده تمام رنگی برای این نسخه با انبوهی از ساختارهای مولکولی و پروتئینی سه بعدی و عکس‌ها بهبود یافته است و دنیای شیمی معدنی را زنده می‌کند.

 

این نسخه که با آخرین تحقیقات به روز شده است، همچنین شامل پوشش های مربوط به جدول تناوبی توسعه یافته و رویکردهای جدید برای تخمین انرژی شبکه و طبقه بندی پیوندهای ترکیبات آلی فلزی است.

 

رویکرد آموزشی به دقت توسعه‌یافته، خواننده را از طریق این موضوع جذاب با ویژگی‌هایی که برای تشویق فکر و کمک به دانش‌آموزان طراحی شده‌اند تا درک خود را تحکیم کنند و یاد بگیرند که چگونه درک خود را از مفاهیم کلیدی در دنیای واقعی به کار ببرند، راهنمایی می‌کند. ویژگی‌ها عبارتند از:

·    بخش‌های جعبه‌ای موضوعی با تمرکز بر حوزه‌های زیست‌شناسی و پزشکی، محیط‌زیست، کاربردها و تئوری دانشجویان را درگیر می‌کند و اطمینان حاصل می‌کند که درک عمیق، عملی و موضوعی به دست می‌آورند

·    طیف وسیعی از تمرین‌های خودآموزی درون متنی شامل مثال‌های کار شده، سؤالات تأملی و مسائل پایان فصل به مطالعه مستقل کمک می‌کند

·    پانل‌های تعریف و چک‌لیست‌های پایان فصل، کمک‌های بازبینی عالی را در اختیار دانش‌آموزان قرار می‌دهند.

·    تصاویری چشمگیر در سراسر کتاب با دقت ساخته شده اند تا ساختارهای مولکولی و پروتئینی را به تصویر بکشند و دانش آموزان را بیشتر به دنیای شیمی معدنی ترغیب کنند

 

شیمی معدنی نسخه 5ام نیز با یک وب سایت همراه گسترده همراه است که در www.pearsoned.co.uk/housecroft . این شامل سوالات چند گزینه ای و ساختارهای مولکولی سه بعدی قابل چرخش است.


توضیحاتی درمورد کتاب به خارجی

Now in its fifth edition, Housecroft & Sharpe's Inorganic Chemistry, continues to provide an engaging, clear and comprehensive introduction to core physical-inorganic principles.

This widely respected and internationally renowned textbook introduces the descriptive chemistry of the elements and the role played by inorganic chemistry in our everyday lives. The stunning full-colour design has been further enhanced for this edition with an abundance of three-dimensional molecular and protein structures and photographs, bringing to life the world of inorganic chemistry.

 

Updated with the latest research, this edition also includes coverage relating to the extended periodic table and new approaches to estimating lattice energies and to bonding classifications of organometallic compounds.

 

A carefully developed pedagogical approach guides the reader through this fascinating subject with features designed to encourage thought and to help students consolidate their understanding and learn how to apply their understanding of key concepts within the real world. Features include:

·    Thematic boxed sections with a focus on areas of Biology and Medicine, the Environment, Applications, and Theory engage students and ensure they gain a deep, practical and topical understanding

·    A wide range of in-text self-study exercises including worked examples, reflective questions and end of chapter problems aid independent study

·    Definition panels and end-of-chapter checklists provide students with excellent revision aids

·    Striking visuals throughout the book have been carefully crafted to illustrate molecular and protein structures and to entice students further into the world of inorganic chemistry

 

Inorganic Chemistry 5th edition is also accompanied by an extensive companion website, available at www.pearsoned.co.uk/housecroft . This features multiple choice questions and rotatable 3D molecular structures.



فهرست مطالب

Front Cover
IFC
Periodic Table
Title Page
Copyright Page
Summary of Contents
Contents
Guided tour
Preface to the fifth edition
Acknowledgements
1 Basic concepts: atoms
	1.1 Introduction
		Inorganic chemistry: it is not an isolated branch of chemistry
		The aims of Chapters 1 and 2
	1.2 Fundamental particles of an atom
	1.3 Atomic number, mass number and isotopes
		Nuclides, atomic number and mass number
		Relative atomic mass
		Isotopes
	1.4 Successes in early quantum theory
		Some important successes of classical quantum theory
		Bohr’s theory of the atomic spectrum of hydrogen
	1.5 An introduction to wave mechanics
		The wave-nature of electrons
		The uncertainty principle
		The Schrodinger wave equation
	1.6 Atomic orbitals
		The quantum numbers n , l  and ml
		The radial part of the wavefunction, R (r )
		The radial distribution function, 4r2R(r)2
		The angular part of the wavefunction, A.; .
		Orbital energies in a hydrogen-like species
		Size of orbitals
		The spin quantum number and the magnetic spin quantum number
		The ground state of the hydrogen atom
	1.7 Many-electron atoms
		The helium atom: two electrons
		Ground state electronic configurations: experimental data
		Penetration and shielding
	1.8 The periodic table
	1.9 The aufbau  principle
		Ground state electronic configurations
		Valence and core electrons
		Diagrammatic representations of electronic configurations
	1.10 Ionization energies and electron affinities
		Ionization energies
		Electron affinities
2 Basic concepts: molecules
	2.1 Bonding models: an introduction
		A historical overview
		Lewis structures
	2.2 Homonuclear diatomic molecules: valence bond (VB) theory
		Uses of the term homonuclear
		Covalent bond distance, covalent radius and van der Waals radius
		The valence bond (VB) model of bonding in H2
		The valence bond (VB) model applied to F2 , O2  and N2
	2.3 Homonuclear diatomic molecules: molecular orbital (MO) theory
		An overview of the MO model
		Molecular orbital theory applied to the bonding in H2
		The bonding in He2; Li2 and Be2
		The bonding in F2 and O2
		What happens if the s–p separation is small?
	2.4 The octet rule and isoelectronic species
		The octet rule: first row p-block elements
		Isoelectronic species
		The octet rule: heavier p-block elements
	2.5 Electronegativity values
		Pauling electronegativity values, P
		Mulliken electronegativity values, M
		Allred–Rochow electronegativity values, AR
		Electronegativity: final remarks
	2.6 Dipole moments
		Polar diatomic molecules
		Molecular dipole moments
	2.7 MO theory: heteronuclear diatomic molecules
		Which orbital interactions should be considered?
		Hydrogen fluoride
		Carbon monoxide
	2.8 Molecular shape and the VSEPR model
		Valence-shell electron-pair repulsion model
		Structures derived from a trigonal bipyramid
		Limitations of the VSEPR model
	2.9 Molecular shape: stereoisomerism
		Square planar species
		Octahedral species
		Trigonal bipyramidal species
		High coordination numbers
		Double bonds
3 Introduction to molecular symmetry
	3.1 Introduction
	3.2 Symmetry operations and symmetry elements
		Rotation about an n-fold axis of symmetry
		Reflection through a plane of symmetry (mirror plane)
		Reflection through a centre of symmetry (inversion centre)
		Rotation about an axis, followed by reflection through a plane perpendicular to this axis
		Identity operator
	3.3 Successive operations
	3.4 Point groups
		C1 point group
		C1v point group
		D1h point group
		Td,  Oh or  Ih point groups
		Determining the point group of a molecule or molecular ion
	3.5 Character tables: an introduction
	3.6 Why do we need to recognize symmetry elements?
	3.7 Vibrational spectroscopy
		How many vibrational modes are there for a given molecular species?
		Selection rules for an infrared or Raman active mode of vibration
		Linear (D1h  or C1v ) and bent (C2v ) triatomic molecules
		Bent molecules XY2 : using the C2v  character table
		XY3  molecules with D3h  symmetry
		XY3  molecules with C3v  symmetry
		XY4  molecules with Td  or D4h  symmetry
		XY6  molecules with Oh  symmetry
		Metal carbonyl complexes, M(CO)n
		Metal carbonyl complexes M(CO)6n Xn
		Observing IR spectroscopic absorptions
	3.8 Chiral molecules
4 Experimental techniques
	4.1 Introduction
	4.2 Separation and purification techniques
		Gas chromatography (GC)
		Liquid chromatography (LC)
		High-performance liquid chromatography (HPLC)
		Recrystallization
	4.3 Elemental analysis
		CHN analysis by combustion
		Atomic absorption spectroscopy (AAS)
	4.4 Compositional analysis: thermogravimetry (TG)
	4.5 Mass spectrometry
		Electron ionization (EI)
		Fast atom bombardment (FAB)
		Matrix-assisted laser desorption ionization time-of-flight (MALDI-TOF)
		Electrospray ionization (ESI)
	4.6 Infrared and Raman spectroscopies
		Energies and wavenumbers of molecular vibrations
		The Fourier transform infrared (FT-IR) spectrometer and sample preparation
		Diagnostic absorptions
		Deuterium/hydrogen exchange
		Raman spectroscopy
	4.7 Electronic spectroscopy
		UV-VIS absorption spectroscopy
		Types of absorption
		Absorbance and the Beer–Lambert Law
		Emission spectroscopy
	4.8 Nuclear magnetic resonance (NMR) spectroscopy
		NMR active nuclei and isotope abundance
		Which nuclei are suitable for NMR spectroscopic studies?
		Resonance frequencies and chemical shifts
		Chemical shift ranges
		Solvents for solution studies
		Integration of signals and signal broadening
		Homonuclear spin–spin coupling: 1 H–1 H
		Heteronuclear spin–spin coupling: 13 C–1 H
		Case studies
		Stereochemically non-rigid species
		Exchange processes in solution
	4.9 Electron paramagnetic resonance (EPR) spectroscopy
		What is EPR spectroscopy?
		The Zeeman electronic effect
		EPR spectra
	4.10 Mo¨ssbauer spectroscopy
		The technique of MoÅN ssbauer spectroscopy
		What can isomer shift data tell us?
	4.11 Structure determination: diffraction methods
		X-ray diffraction (XRD)
		Single crystal X-ray diffraction
		Powder X-ray diffraction
		Single crystal neutron diffraction
		Electron diffraction
		Low-energy electron diffraction (LEED)
		Structural databases
	4.12 Photoelectron spectroscopy (PES, UPS, XPS, ESCA)
	4.13 Computational methods
		Hartree–Fock theory
		Density functional theory
		Hu¨ckel MO theory
		Molecular mechanics (MM)
5 Bonding in polyatomic molecules
	5.1 Introduction
	5.2 Valence bond theory: hybridization of atomic orbitals
		What is orbital hybridization?
		sp Hybridization: a scheme for linear species
		sp2 Hybridization: a scheme for trigonal planar species
		sp3 Hybridization: a scheme for tetrahedral and related species
		Other hybridization schemes
	5.3 Valence bond theory: multiple bonding in polyatomic molecules
		C2 H4
		HCN
		BF3
	5.4 Natural bond orbitals
	5.5 Molecular orbital theory: the ligand group orbital approach and
		Molecular orbital diagrams: moving from a diatomic to polyatomic species
		MO approach to bonding in linear XH2 : symmetry matching by inspection
		MO approach to bonding in linear XH2 : working from molecular symmetry
		A bent triatomic: H2 O
	5.6 Molecular orbital theory applied to the polyatomic molecules BH3 , NH3  and CH4
		BH3
		NH3
		CH4
		A comparison of the MO and VB bonding models
	5.7 Molecular orbital theory: bonding analyses soon become complicated
	5.8 Molecular orbital theory: learning to use the theory objectively -Bonding in CO2
		p-Bonding in CO2
		.NO3
		SF6
		Three-centre two-electron interactions
		A more advanced problem: B2 H6
6 Structures and energetics of metallic and ionic solids
	6.1 Introduction
	6.2 Packing of spheres
		Cubic and hexagonal close-packing
		The unit cell: hexagonal and cubic close-packing
		Interstitial holes: hexagonal and cubic close-packing
		Non-close-packing: simple cubic and body-centred cubic arrays
	6.3 The packing-of-spheres model applied to the structures of elements
		Group 18 elements in the solid state
		H2  and F2  in the solid state
		Metallic elements in the solid state
	6.4 Polymorphism in metals
		Polymorphism: phase changes in the solid state
		Phase diagrams
	6.5 Metallic radii
	6.6 Melting points and standard enthalpies of atomization of metals
	6.7 Alloys and intermetallic compounds
		Substitutional alloys
		Interstitial alloys
		Intermetallic compounds
	6.8 Bonding in metals and semiconductors
		Electrical conductivity and resistivity
		Band theory of metals and insulators
		The Fermi level
	6.9 Semiconductors
		Intrinsic semiconductors
		Extrinsic (n- and p-type) semiconductors
	6.10 Sizes of ions
		Ionic radii
		Periodic trends in ionic radii
	6.11 Ionic lattices
		The rock salt (NaCl) structure type
		The caesium chloride (CsCl) structure type
		The fluorite (CaF2) structure type
		The antifluorite structure type
		The zinc blende (ZnS) structure type: a diamond-type network
		The b -cristobalite (SiO2) structure type
		The wurtzite (ZnS) structure type
		The rutile (TiO2) structure type
		CdI2  and CdCl2 : layer structures
		The perovskite (CaTiO3) structure type: a double oxide
	6.12 Crystal structures of semiconductors
	6.13 Lattice energy: estimates from an electrostatic model
		Coulombic attraction within an isolated ion-pair
		Coulombic interactions in an ionic lattice
		Born forces
		The Born–LandeÅL equation
		Madelung constants
		Refinements to the Born–LandeÅL equation
		Overview
	6.14 Lattice energy: the Born–Haber cycle
	6.15 Lattice energy: ‘calculated’ versus ‘experimental’ values
	6.16 Estimating lattice energies of new materials
		The Kapustinskii equation
		The volume-based thermodynamic (VBT) approach
	6.17 Applications of lattice energies
		Estimation of electron affinities
		Fluoride affinities
		Estimation of standard enthalpies of formation and disproportionation
	6.18 Defects in solid state lattices
		Schottky defect
		Frenkel defect
		Experimental observation of Schottky and Frenkel defects
		Non-stoichiometric compounds
		Colour centres (F-centres)
		Thermodynamic effects of crystal defects
7 Acids, bases and ions in aqueous solution
	7.1 Introduction
	7.2 Properties of water
		Structure and hydrogen bonding
		The self-ionization of water
		Water as a Bronsted acid or base
	7.3 Definitions and units in aqueous solution
		Molarity and molality
		Standard state
		Activity
	7.4 Some Brønsted acids and bases
		Carboxylic acids: examples of mono-, di- and polybasic acids
		Inorganic acids
		Inorganic bases: hydroxides
		Inorganic bases: nitrogen bases
	7.5 The energetics of acid dissociation in aqueous solution
		Hydrogen halides
		H2 S; H2 Se and H2 Te
	7.6 Trends within a series of oxoacids EOn (OH)m
	7.7 Aquated cations: formation and acidic properties
		Water as a Lewis base
		Aquated cations as Bronsted acids
	7.8 Amphoteric oxides and hydroxides
		Amphoteric behaviour
		Periodic trends in amphoteric properties
	7.9 Solubilities of ionic salts
		Solubility and saturated solutions
		Sparingly soluble salts and solubility products
		The energetics of the dissolution of an ionic salt: solG
		The energetics of the dissolution of an ionic salt: hydration of ions
		Solubilities: some concluding remarks
	7.10 Common-ion effect
	7.11 Coordination complexes: an introduction
		Definitions and terminology
		Investigating coordination complex formation
	7.12 Stability constants of coordination complexes
		Determination of stability constants
		Trends in stepwise stability constants
		Thermodynamic considerations of complex formation: an introduction
	7.13 Factors affecting the stabilities of complexes containing only monodentate ligands
		Ionic size and charge
		Hard and soft metal centres and ligands
8 Reduction and oxidation
	8.1 Introduction
		Oxidation and reduction
		Oxidation states
		Stock nomenclature
	8.2 Standard reduction potentials, Eo , and relationships between Eo ,Go  and K
		Half-cells and galvanic cells
		Defining and using standard reduction potentials, E
		Dependence of reduction potentials on cell conditions
	8.3 The effect of complex formation or precipitation on Mz+/M reduction potentials
		Half-cells involving silver halides
		Modifying the relative stabilities of different oxidation states of a metal
	8.4 Disproportionation reactions
		Disproportionation
		Stabilizing species against disproportionation
	8.5 Potential diagrams
	8.6 Frost–Ebsworth diagrams
		Frost–Ebsworth diagrams and their relationship to potential diagrams
		Interpretation of Frost–Ebsworth diagrams
	8.7 The relationships between standard reduction potentials and some other quantities
		Factors influencing the magnitudes of standard reduction potentials
		Values of fG for aqueous ions
	8.8 Applications of redox reactions to the extraction of elements from their ores
		Ellingham diagrams
9 Non-aqueous media
	9.1 Introduction
	9.2 Relative permittivity
	9.3 Energetics of ionic salt transfer from water to an organic solvent
	9.4 Acid–base behaviour in non-aqueous solvents
		Strengths of acids and bases
		Levelling and differentiating effects
		‘Acids’ in acidic solvents
		Acids and bases: a solvent-oriented definition
		Proton-containing and aprotic solvents
	9.5 Liquid sulfur dioxide
	9.6 Liquid ammonia
		Physical properties
		Self-ionization
		Reactions in liquid NH3
		Solutions of s-block metals in liquid NH3
		Redox reactions in liquid NH3
	9.7 Liquid hydrogen fluoride
		Physical properties
		Acid–base behaviour in liquid HF
		Electrolysis in liquid HF
	9.8 Sulfuric acid and fluorosulfonic acid
		Physical properties of sulfuric acid
		Acid–base behaviour in liquid H2 SO4
		Physical properties of fluorosulfonic acid
	9.9 Superacids
	9.10 Bromine trifluoride
		Physical properties
		Behaviour of fluoride salts and molecular fluorides in BrF3
		Reactions in BrF3
	9.11 Dinitrogen tetraoxide
		Physical properties
		Reactions in N2 O4
	9.12 Ionic liquids
		Molten salt solvent systems
		Ionic liquids at ambient temperatures
	9.13 Supercritical fluids
		Properties of supercritical fluids and their uses as solvents
		Supercritical fluids as media for inorganic chemistry
10 Hydrogen
	10.1 Hydrogen: the simplest atom
	10.2 The H.  and H  ions
		The hydrogen ion (proton)
		The hydride ion
	10.3 Isotopes of hydrogen
		Protium and deuterium
		Kinetic isotope effects
		Deuterated compounds
		Tritium
	10.4 Dihydrogen
		Occurrence
		Physical properties
		Synthesis and uses
		Reactivity
	10.5 Polar and non-polar E–H bonds
	10.6 Hydrogen bonding
		The hydrogen bond
		Trends in boiling points, melting points and enthalpies of vaporization for p -block binary hydrides
		Infrared spectroscopy
		Solid state structures
		Hydrogen bonding in biological systems
	10.7 Binary hydrides: classification and general properties
		Classification
		Metallic hydrides
		Saline hydrides
		Molecular hydrides and complexes derived from them
		Covalent hydrides with extended structures
11 Group 1: the alkali metals
	11.1 Introduction
	11.2 Occurrence, extraction and uses
		Occurrence
		Extraction
		Major uses of the alkali metals and their compounds
	11.3 Physical properties
		General properties
		Atomic spectra and flame tests
		Radioactive isotopes
		NMR active nuclei
	11.4 The metals
		Appearance
		Reactivity
	11.5 Halides
	11.6 Oxides and hydroxides
		Oxides, peroxides, superoxides, suboxides and ozonides
		Hydroxides
	11.7 Salts of oxoacids: carbonates and hydrogencarbonates
	11.8 Aqueous solution chemistry and macrocyclic complexes
		Hydrated ions
		Complex ions
	11.9 Non-aqueous coordination chemistry
12 The group 2 metals
	12.1 Introduction
	12.2 Occurrence, extraction and uses
		Occurrence
		Extraction
		Major uses of the group 2 metals and their compounds
	12.3 Physical properties
		General properties
		Flame tests
		Radioactive isotopes
	12.4 The metals
		Appearance
		Reactivity
	12.5 Halides
		Beryllium halides
		Halides of Mg, Ca, Sr and Ba
	12.6 Oxides and hydroxides
		Oxides and peroxides
		Hydroxides
	12.7 Salts of oxoacids
	12.8 Complex ions in aqueous solution
		Aqua species of beryllium
		Aqua species of Mg2+, Ca2+, Sr2+ and Ba2+
		Complexes with ligands other than water
	12.9 Complexes with amido or alkoxy ligands
	12.10 Diagonal relationships between Li and Mg, and between Be and Al
		Lithium and magnesium
		Beryllium and aluminium
13 The group 13 elements
	13.1 Introduction
	13.2 Occurrence, extraction and uses
		Occurrence
		Extraction
		Major uses of the group 13 elements and their compounds
	13.3 Physical properties
		Electronic configurations and oxidation states
		NMR active nuclei
	13.4 The elements
		Appearance
		Structures of the elements
		Reactivity
	13.5 Simple hydrides
		Neutral hydrides
		The [MH4]- ions
	13.6 Halides and complex halides
		Boron halides: BX3  and B2 X4
		Al(III), Ga(III), In(III) and Tl(III) halides and their complexes
		Lower oxidation state Al, Ga, In and Tl halides
	13.7 Oxides, oxoacids, oxoanions and hydroxides
		Boron oxides, oxoacids and oxoanions
		Aluminium oxides, oxoacids, oxoanions and hydroxides
		Oxides of Ga, In and Tl
	13.8 Compounds containing nitrogen
		Nitrides
		Ternary boron nitrides
		Molecular species containing B–N or B–P bonds
		Molecular species containing group 13 metal–nitrogen bonds
	13.9 Aluminium to thallium: salts of oxoacids, aqueous solution chemistry and complexes
		Aluminium sulfate and alums
		Aqua ions
		Redox reactions in aqueous solution
		Coordination complexes of the M3+ ions
	13.10 Metal borides
	13.11 Electron-deficient borane and carbaborane clusters: an introduction
14 The group 14 elements
	14.1 Introduction
	14.2 Occurrence, extraction and uses
		Occurrence
		Extraction and manufacture
		Uses
	14.3 Physical properties
		Ionization energies and cation formation
		Some energetic and bonding considerations
		NMR active nuclei
		Mossbauer spectroscopy
	14.4 Allotropes of carbon
		Graphite and diamond: structure and properties
		Graphite: intercalation compounds
		Fullerenes: synthesis and structure
		Fullerenes: reactivity
		Carbon nanotubes
	14.5 Structural and chemical properties of silicon, germanium, tin and lead
		Structures
		Chemical properties
	14.6 Hydrides
		Binary hydrides
		Halohydrides of silicon and germanium
	14.7 Carbides, silicides, germides, stannides and plumbides
		Carbides
		Silicides
		Zintl ions containing Si, Ge, Sn and Pb
	14.8 Halides and complex halides
		Carbon halides
		Silicon halides
		Halides of germanium, tin and lead
	14.9 Oxides, oxoacids and hydroxides
		Oxides and oxoacids of carbon
		Silica, silicates and aluminosilicates
		Oxides, hydroxides and oxoacids of germanium, tin and lead
	14.10 Siloxanes and polysiloxanes (silicones)
	14.11 Sulfides
	14.12 Cyanogen, silicon nitride and tin nitride
		Cyanogen and its derivatives
		Silicon nitride
		Tin(IV) nitride
	14.13 Aqueous solution chemistry and salts of oxoacids of germanium, tin and lead
15 The group 15 elements
	15.1 Introduction
	15.2 Occurrence, extraction and uses
		Occurrence
		Extraction
		Uses
	15.3 Physical properties
		Bonding considerations
		NMR active nuclei
		Radioactive isotopes
	15.4 The elements
		Nitrogen
		Phosphorus
		Arsenic, antimony and bismuth
	15.5 Hydrides
		Trihydrides, EH3  (E. N, P, As, Sb and Bi)
		Hydrides E2 H4  (E. N, P, As)
		Chloramine and hydroxylamine
		Hydrogen azide and azide salts
	15.6 Nitrides, phosphides, arsenides, antimonides and bismuthides
		Nitrides
		Phosphides
		Arsenides, antimonides and bismuthides
	15.7 Halides, oxohalides and complex halides
		Nitrogen halides
		Oxofluorides and oxochlorides of nitrogen
		Phosphorus halides
		Phosphoryl trichloride, POCl3
		Arsenic and antimony halides
		Bismuth halides
	15.8 Oxides of nitrogen
		Dinitrogen monoxide, N2O
		Nitrogen monoxide, NO
		Dinitrogen trioxide, N2O3
		Dinitrogen tetraoxide, N2 O4 , and nitrogen dioxide, NO2
		Dinitrogen pentaoxide, N2O5
	15.9 Oxoacids of nitrogen
		Isomers of H2 N2 O2
		Nitrous acid, HNO2
		Nitric acid, HNO3 , and its derivatives
	15.10 Oxides of phosphorus, arsenic, antimony and bismuth
		Oxides of phosphorus
		Oxides of arsenic, antimony and bismuth
	15.11 Oxoacids of phosphorus
		Phosphinic acid, H3 PO2
		Phosphonic acid, H3 PO3
		Hypodiphosphoric acid, H4 P2 O6
		Phosphoric acid, H3 PO4 , and its derivatives
		Chiral phosphate anions
	15.12 Oxoacids of arsenic, antimony and bismuth
	15.13 Phosphazenes
	15.14 Sulfides and selenides
		Sulfides and selenides of phosphorus
		Arsenic, antimony and bismuth sulfides
	15.15 Aqueous solution chemistry and complexes
16 The group 16 elements
	16.1 Introduction
	16.2 Occurrence, extraction and uses
		Occurrence
		Extraction
		Uses
	16.3 Physical properties and bonding considerations
		NMR active nuclei and isotopes as tracers
	16.4 The elements
		Dioxygen
		Ozone
		Sulfur: allotropes
		Sulfur: reactivity
		Selenium and tellurium
	16.5 Hydrides
		Water, H2O
		Hydrogen peroxide, H2O2
		Hydrides H2E (E = S, Se, Te)
		Polysulfanes
	16.6 Metal sulfides, polysulfides, polyselenides and polytellurides
		Sulfides
		Polysulfides
		Polyselenides and polytellurides
	16.7 Halides, oxohalides and complex halides
		Oxygen fluorides
		Sulfur fluorides and oxofluorides
		Sulfur chlorides and oxochlorides
		Halides of selenium and tellurium
	16.8 Oxides
		Oxides of sulfur
		Oxides of selenium and tellurium
	16.9 Oxoacids and their salts
		Dithionous acid, H2S2O4
		Sulfurous and disulfurous acids, H2SO3  and H2S2O5
		Dithionic acid, H2S2O6
		Sulfuric acid, H2SO4
		Fluoro- and chlorosulfonic acids, HSO3F and HSO3 Cl
		Polyoxoacids with S–O–S units
		Peroxysulfuric acids, H2S2O8  and H2SO5
		Thiosulfuric acid, H2S2O3, and polythionates
		Oxoacids of selenium and tellurium
	16.10 Compounds of sulfur and selenium with nitrogen
		Sulfur–nitrogen compounds
		Tetraselenium tetranitride
	16.11 Aqueous solution chemistry of sulfur, selenium and tellurium
17 The group 17 elements
	17.1 Introduction
		Fluorine, chlorine, bromine and iodine
		Astatine and tennessine
	17.2 Occurrence, extraction and uses
		Occurrence
		Extraction
		Uses
	17.3 Physical properties and bonding considerations
		NMR active nuclei and isotopes as tracers
	17.4 The elements
		Difluorine
		Dichlorine, dibromine and diiodine
		Charge transfer complexes
		Clathrates
	17.5 Hydrogen halides
	17.6 Metal halides: structures and energetics
	17.7 Interhalogen compounds and polyhalogen ions
		Interhalogen compounds
		Bonding in . [XY2]- ions
		Polyhalogen cations
		Polyhalide anions
	17.8 Oxides and oxofluorides of chlorine, bromine and iodine
		Oxides
		Oxofluorides
	17.9 Oxoacids and their salts
		Hypofluorous acid, HOF
		Oxoacids of chlorine, bromine and iodine
	17.10 Aqueous solution chemist
18 The group 18 elements
	18.1 Introduction
	18.2 Occurrence, extraction and uses
		Occurrence
		Extraction
		Uses
	18.3 Physical properties
		NMR active nuclei
	18.4 Compounds of xenon
		Fluorides
		Chlorides
		Oxides
		Oxofluorides and oxochlorides
		Other compounds of xenon
	18.5 Compounds of argon, krypton and radon
19 d-Block metal chemistry: general considerations
	19.1 Topic overview
	19.2 Ground state electronic configurations
		d-Block metals versus transition elements
		Electronic configurations
	19.3 Physical properties
	19.4 The reactivity of the metals
	19.5 Characteristic properties: a general perspective
		Colour
		Paramagnetism
		Complex formation
		Variable oxidation states
	19.6 Electroneutrality principle
	19.7 Coordination numbers and geometries
		The Kepert model
		Coordination numbers in the solid state
		Coordination number 2
		Coordination number 3
		Coordination number 4
		Coordination number 5
		Coordination number 6
		Coordination number 7
		Coordination number 8
		Coordination number 9
		Coordination numbers of 10 and above
	19.8 Isomerism in d -block metal complexes
		Structural isomerism: ionization isomers
		Structural isomerism: hydration isomers
		Structural isomerism: coordination isomerism
		Structural isomerism: linkage isomerism
		Stereoisomerism: diastereoisomers
		Stereoisomerism: enantiomers
20 d-Block metal chemistry: coordination complexes
	20.1 Introduction
		High- and low-spin states
	20.2 Bonding in d -block metal complexes: valence bond theory
		Hybridization schemes
	20.3 Crystal field theory
		The octahedral crystal field
		Crystal field stabilization energy: high- and low-spin octahedral complexes
		Jahn–Teller distortions
		The tetrahedral crystal field
		The square planar crystal field
		Other crystal fields
		Crystal field theory: uses and limitations
	20.4 Molecular orbital theory: octahedral complexes
		Complexes with no  metal–ligand  -bonding
		Complexes with metal–ligand  -bonding
	20.5 Ligand field theory
	20.6 Describing electrons in multi-electron systems
		Quantum numbers L  and ML  for multi-electron species
		Quantum numbers S  and MS  for multi-electron species
		Microstates and term symbols
		The quantum numbers J  and MJ
		Ground states of elements with Z=1-10
		The d2 configuration
	20.7 Electronic spectra: absorption
		Spectral features
		Charge transfer absorptions
		Selection rules
		Electronic absorption spectra of octahedral and tetrahedral complexes
		Interpretation of electronic absorption spectra: use of Racah parameters
		Interpretation of electronic absorption spectra: Tanabe–Sugano diagrams
	20.8 Electronic spectra: emission
	20.9 Evidence for metal–ligand covalent bonding
		The nephelauxetic effect
		EPR spectroscopy
	20.10 Magnetic properties
		Magnetic susceptibility and the spin-only formula
		Spin and orbital contributions to the magnetic moment
		The effects of temperature on eff
		Spin crossover
		Ferromagnetism, antiferromagnetism and ferrimagnetism
	20.11 Thermodynamic aspects: ligand field stabilization energies (LFSE)
		Trends in LFSE
		Lattice energies and hydration energies of Mn+ ions
		Octahedral versus tetrahedral coordination: spinels
	20.12 Thermodynamic aspects: the Irving–Williams series
	20.13 Thermodynamic aspects: oxidation states in aqueous solution
21 d-Block metal chemistry: the first row metals
	21.1 Introduction
	21.2 Occurrence, extraction and uses
	21.3 Physical properties: an overview
	21.4 Group 3: scandium
		The metal
		Scandium(III)
	21.5 Group 4: titanium
		The metal
		Titanium(IV)
		Titanium(III)
		Low oxidation states
	21.6 Group 5: vanadium
		The metal
		Vanadium(V)
		Vanadium(IV)
		Vanadium(III)
		Vanadium(II)
	21.7 Group 6: chromium
		The metal
		Chromium(VI)
		Chromium(V) and chromium(IV)
		Chromium(III)
		Chromium(II)
		Chromium–chromium multiple bonds
	21.8 Group 7: manganese
		The metal
		Manganese(VII)
		Manganese(VI)
		Manganese(V)
		Manganese(IV)
		Manganese(III)
		Manganese(II)
		Manganese(I)
	21.9 Group 8: iron
		The metal
		Iron(VI), iron(V) and iron(IV)
		Iron(III)
		Iron(II)
		Iron in low oxidation states
	21.10 Group 9: cobalt
		The metal
		Cobalt(IV)
		Cobalt(III)
		Cobalt(II)
	21.11 Group 10: nickel
		The metal
		Nickel(IV) and nickel(III
		Nickel(II)
		Nickel(I)
	21.12 Group 11: copper
		The metal
		Copper(IV) and copper(III)
		Copper(II)
		Copper(I)
	21.13 Group 12: zinc
		The metal
		Zinc(II)
		Zinc(I)
22 d-Block metal chemistry: the heavier metals
	22.1 Introduction
	22.2 Occurrence, extraction and uses
	22.3 Physical properties
		Effects of the lanthanoid contraction
		Coordination numbers
		NMR active nuclei
	22.4 Group 3: yttrium
		The metal
		Yttrium(III)
	22.5 Group 4: zirconium and hafnium
		The metals
		Zirconium(IV) and hafnium(IV)
		Lower oxidation states of zirconium and hafnium
		Zirconium clusters
	22.6 Group 5: niobium and tantalum
		The metals
		Niobium(V) and tantalum(V)
		Niobium(IV) and tantalum(IV)
		Lower oxidation state halides
	22.7 Group 6: molybdenum and tungsten
		The metals
		Molybdenum(VI) and tungsten(VI)
		Molybdenum(V) and tungsten(V)
		Molybdenum(IV) and tungsten(IV)
		Molybdenum(III) and tungsten(III)
		Molybdenum(II) and tungsten(II)
	22.8 Group 7: technetium and rhenium
		The metals
		High oxidation states of technetium and rhenium: M(VII), M(VI) and M(V)
		Technetium(IV) and rhenium(IV)
		Technetium(III) and rhenium(III)
		Technetium(I) and rhenium(I)
	22.9 Group 8: ruthenium and osmium
		The metals
		High oxidation states of ruthenium and osmium: M(VIII), M(VII) and M(VI)
		Ruthenium(V), (IV) and osmium(V), (IV)
		Ruthenium(III) and osmium(III)
		Ruthenium(II) and osmium(II)
		Mixed-valence ruthenium complexes
	22.10 Group 9: rhodium and iridium
		The metals
		High oxidation states of rhodium and iridium: M(VI) and M(V)
		Rhodium(IV) and iridium(IV)
		Rhodium(III) and iridium(III)
		Rhodium(II) and iridium(II)
		Rhodium(I) and iridium(I)
	22.11 Group 10: palladium and platinum
		The metals
		The highest oxidation states: M(VI) and M(V)
		Palladium(IV) and platinum(IV)
		Palladium(III), platinum(III) and mixed-valence complexes
		Palladium(II) and platinum(II)
		Platinum(–II)
	22.12 Group 11: silver and gold
		The metals
		Gold(V) and silver(V)
		Gold(III) and silver(III)
		Gold(II) and silver(II)
		Gold(I) and silver(I)
		Gold(–I) and silver(–I)
	22.13 Group 12: cadmium and mercury
		The metals
		Cadmium(II)
		Mercury(II)
		Mercury(I)
23 Organometallic compounds of s- and p-block elements
	23.1 Introduction
	23.2 Group 1: alkali metal organometallics
	23.3 Group 2 organometallics
		Beryllium
		Magnesium
		Calcium, strontium and barium
	23.4 Group 13
		Boron
		Aluminium
		Gallium, indium and thallium
	23.5 Group 14
		Silicon
		Germanium
		Tin
		Lead
		Coparallel and tilted C5 -rings in group 14 metallocenes
	23.6 Group 15
		Bonding aspects and E=E bond formation
		Arsenic, antimony and bismuth
	23.7 Group 16
		Selenium and tellurium
24 Organometallic compounds of d-block elements
	24.1 Introduction
	24.2 Common types of ligand: bonding and spectroscopy
		-Bonded alkyl, aryl and related ligands
		Carbonyl ligands
		Hydride ligands
		Phosphane and related ligands
		-Bonded organic ligands
		Nitrogen monoxide
		Dinitrogen
		Dihydrogen
	24.3 The 18-electron rule
	24.4 Covalent bond classification (CBC)
	24.5 Metal carbonyls: synthesis, physical properties and structure
		Synthesis and physical properties
		Structures
	24.6 The isolobal principle and application of Wade’s rules
	24.7 Total valence electron counts in d-block organometallic clusters
		Single cage structures
		Condensed cages
		Limitations of total valence counting schemes
	24.8 Types of organometallic reactions
		Substitution of CO ligands
		Oxidative addition
		Alkyl and hydrogen migrations
		b-Hydrogen elimination
		a-Hydrogen abstraction
		Summary
	24.9 Metal carbonyls: selected reactions
	24.10 Metal carbonyl hydrides and halides
	24.11 Alkyl, aryl, alkene and alkyne complexes
		-Bonded alkyl and aryl ligands
		Alkene ligands
		Alkyne ligands
	24.12 Allyl and buta-1,3-diene complexes
		Allyl and related ligands
		Buta-1,3-diene and related ligands
	24.13 Carbene and carbyne complexes
	24.14 Complexes containing Z5 -cyclopentadienyl ligands
		Ferrocene and other metallocenes
		(Z5-Cp)2Fe2(CO)4 and derivatives
	24.15 Complexes containing Z6- and Z7-ligands
		Z6-Arene ligands
		Cycloheptatriene and derived ligands
	24.16 Complexes containing the Z4-cyclobutadiene ligand
25 Catalysis and some industrial processes
	25.1 Introduction and definitions
	25.2 Catalysis: introductory concepts
		Energy profiles for a reaction: catalysed versus non-catalysed
		Catalytic cycles
		Choosing a catalyst
	25.3 Homogeneous catalysis: alkene (olefin) and alkyne metathesis
	25.4 Homogeneous catalytic reduction of N2 to NH3
	25.5 Homogeneous catalysis: industrial applications
		Alkene hydrogenation
		Monsanto and Cativa acetic acid syntheses
		Tennessee–Eastman acetic anhydride process
		Hydroformylation (Oxo-process)
		Alkene oligomerization
	25.6 Homogeneous catalyst development
		Polymer-supported catalysts
		Biphasic catalysis
	25.7 Heterogeneous catalysis: surfaces and interactions with adsorbates
	25.8 Heterogeneous catalysis: commercial applications
		Alkene polymerization: Ziegler–Natta catalysis and metallocene catalysts
		Fischer–Tropsch carbon chain growth
		Haber–Bosch process
		Production of SO3 in the Contact process
		Catalytic converters
		Zeolites as catalysts for organic transformations: uses of ZSM-5
	25.9 Heterogeneous catalysis: organometallic cluster models
26 d-Block metal complexes: reaction mechanisms
	26.1 Introduction
	26.2 Ligand substitutions: some general points
		Kinetically inert and labile complexes
		Stoichiometric equations say nothing about mechanism
		Types of substitution mechanism
		Activation parameters
	26.3 Substitution in square planar complexes
		Rate equations, mechanism and the trans-effect
		Ligand nucleophilicity
	26.4 Substitution and racemization in octahedral complexes
		Water exchange
		The Eigen–Wilkins mechanism
		Stereochemistry of substitution
		Base-catalysed hydrolysis
		Isomerization and racemization of octahedral complexes
	26.5 Electron-transfer processes
		Inner-sphere mechanism
		Outer-sphere mechanism
27 The f-block metals: lanthanoids and actinoids
	27.1 Introduction
	27.2 f-Orbitals and oxidation states
	27.3 Atom and ion sizes
		The lanthanoid contraction
		Coordination numbers
	27.4 Spectroscopic and magnetic properties
		Electronic spectra and magnetic moments: lanthanoids
		Luminescence of lanthanoid complexes
		Electronic spectra and magnetic moments: actinoids
	27.5 Sources of the lanthanoids and actinoids
		Occurrence and separation of the lanthanoids
		The actinoids
	27.6 Lanthanoid metals
	27.7 Inorganic compounds and coordination complexes of the lanthanoids
		Halides
		Hydroxides and oxides
		Complexes of Ln(III)
	27.8 Organometallic complexes of the lanthanoids
		-Bonded complexes
		Cyclopentadienyl complexes
		Bis(arene) derivatives
		Complexes containing the Z8-cyclooctatetraenyl ligand
	27.9 The actinoid metals
	27.10 Inorganic compounds and coordination complexes of thorium, uranium and plutonium
		Thorium
		Uranium
		Plutonium
	27.11 Organometallic complexes of thorium and uranium
		-Bonded complexes
		Cyclopentadienyl derivatives
		Complexes containing the Z8-cyclooctatetraenyl ligand
28 Inorganic materials and nanotechnology
	28.1 Introduction
	28.2 Electrical conductivity in ionic solids
		Sodium and lithium ion conductors
		d-Block metal(II) oxides
	28.3 Transparent conducting oxides and their applications in devices
		Sn-doped In2O3 (ITO) and F-doped SnO2 (FTO)
		Dye-sensitized solar cells (DSCs)
		Solid state lighting: OLEDs
		Solid state lighting: LECs
	28.4 Superconductivity
		Superconductors: early examples and basic theory
		High-temperature superconductors
		Iron-based superconductors
		Chevrel phases
		Superconducting properties of MgB2
		Applications of superconductors
	28.5 Ceramic materials: colour pigments
		White pigments (opacifiers)
		Adding colour
	28.6 Chemical vapour deposition (CVD)
		High-purity silicon for semiconductors
		a-Boron nitride
		Silicon nitride and carbide
		III–V Semiconductors
		Metal deposition
		Ceramic coatings
		Perovskites and cuprate superconductors
	28.7 Inorganic fibres
		Boron fibres
		Carbon fibres
		Silicon carbide fibres
		Alumina fibres
	28.8 Graphene
	28.9 Carbon nanotubes
29 The trace metals of life
	29.1 Introduction
		Amino acids, peptides and proteins: some terminology
	29.2 Metal storage and transport: Fe, Cu, Zn and V
		Iron storage and transport
		Metallothioneins: transporting some toxic metals
	29.3 Dealing with O2
		Haemoglobin and myoglobin
		Haemocyanin
		Haemerythrin
		Cytochromes P-450
	29.4 Biological redox processes
		Blue copper proteins
		The mitochondrial electron-transfer chain
		Iron–sulfur proteins
		Cytochromes
	29.5 The Zn2+ ion: Nature’s Lewis acid
		Carbonic anhydrase II
		Carboxypeptidase A
		Carboxypeptidase G2
		Cobalt-for-zinc ion substitution
Appendices
	1 Greek letters with pronunciations
	2 Abbreviations and symbols for quantities and units
	3 Selected character tables
	4 The electromagnetic spectrum
	5 Naturally occurring isotopes and their abundances
	6 Van der Waals, metallic, covalent and ionic radii
	7 Pauling electronegativity values (P) for selected elements of theperiodic table
	8 Ground state electronic configurations of the elements andionization energies
	9 Electron affinities
	10 Standard enthalpies of atomization (aH) of the elements at 298 K
	11 Selected standard reduction potentials (298 K)
	12 Selected bond enthalpy terms
Answers to non-descriptive problems
Index
IUPAC: Brief Guide to the Nomenclature of Inorganic Chemistry
IBC
Back Cover




نظرات کاربران