دسترسی نامحدود
برای کاربرانی که ثبت نام کرده اند
برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید
در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید
برای کاربرانی که ثبت نام کرده اند
درصورت عدم همخوانی توضیحات با کتاب
از ساعت 7 صبح تا 10 شب
ویرایش: 4
نویسندگان: Prof Catherine Housecroft. Alan G. Sharpe
سری:
ISBN (شابک) : 0273742752, 9780273742753
ناشر: Pearson
سال نشر: 2012
تعداد صفحات: 1257
زبان: English
فرمت فایل : PDF (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود)
حجم فایل: 69 مگابایت
در صورت تبدیل فایل کتاب Inorganic Chemistry به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.
توجه داشته باشید کتاب شیمی معدنی نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.
اکنون در ویرایش چهارم، شیمی معدنی Housecroft & Sharpe یک کتاب درسی بین المللی معتبر و پیشرو است. شیمی معدنی اساساً به عنوان یک متن دانشجویی طراحی شده است، اما به عنوان یک کتاب مرجع برای کسانی که در زمینه شیمی معدنی کار می کنند به خوبی مورد استقبال قرار گرفته است.
شیمی معدنی هم معلمان و هم دانشآموزان را با مقدمهای به وضوح نوشته و به زیبایی مصور از اصول اصلی فیزیکی- معدنی ارائه میکند. . این شیمی توصیفی عناصر و نقشی که شیمی معدنی در زندگی روزمره ما ایفا می کند را معرفی می کند. فصول مربوط به کاتالیزور و فرآیندهای صنعتی، شیمی بیوان آلی، و مواد معدنی و فناوری نانو شامل بسیاری از آخرین پیشرفت ها در این زمینه ها می شود. فصل جدیدی در مورد تکنیکهای تجربی وجود دارد، و تعداد زیاد مثالهای کار شده، تمرینها و مسائل پایان فصل، طیف وسیعی از کاربردهای آنها را در شیمی معدنی نشان میدهد. طراحی چشمگیر تمام رنگی شامل مجموعهای از ساختارهای مولکولی و پروتئینی سهبعدی و عکسها است که دانشآموزان را به کاوش در دنیای شیمی معدنی ترغیب میکند.
در چهار نسخه آن، شیمی معدنی با موفقیت به معلمان و دانشآموزان ابزارهایی را داده است که با اطمینان و لذت به موضوع نزدیک شوند. مسائل زیست محیطی مرتبط با شیمی معدنی، موضوعات مرتبط با شیمی معدنی به زیست شناسی و پزشکی، و کاربردهای مواد شیمیایی معدنی در آزمایشگاه، صنعت و زندگی روزمره، اساس طیف وسیعی از جعبههای موضوعی کتاب را تشکیل میدهند که به دانشآموزان کمک میکند تا اهمیت را درک کنند. و مرتبط بودن موضوع
یک رویکرد آموزشی قوی در قلب شیمی معدنی است. در حالی که مثالهای کار شده دانشآموزان را گام به گام از طریق محاسبات و تمرینها میبرد، مجموعه تمرینهای خودآموز و مشکلات پایان فصل، یادگیری را تقویت میکند و دانش و مهارتهای موضوعی را توسعه میدهد. مسائل انتهای فصل شامل مجموعهای از «مسائل مروری» و مسائلی با عنوان «موضوعات شیمی معدنی» است که از مطالب روزمره برای نشان دادن ارتباط مطالب در هر فصل استفاده میکند. پانل های تعاریف و چک لیست های پایان فصل به دانش آموزان کمک های تجدید نظر عالی ارائه می دهند. پیشنهادهای خواندن بیشتر، از مقالههای موضوعی گرفته تا مقالات ادبی اخیر، دانشآموزان را تشویق میکند تا موضوعات را عمیقتر بررسی کنند.
Now in its fourth edition, Housecroft & Sharpe's Inorganic Chemistry is a well-respected and leading international textbook. Inorganic Chemistry is primarily designed to be a student text but is well-received as a reference book for those working in the field of inorganic chemistry.
Inorganic Chemistry provides both teachers and students with a clearly written and beautifully-illustrated introduction to core physical-inorganic principles. It introduces the descriptive chemistry of the elements and the role played by inorganic chemistry in our everyday lives. Chapters on catalysis and industrial processes, bioinorganic chemistry, and inorganic materials and nanotechnology include many of the latest advances in these fields. There is a new chapter on experimental techniques, and the large number of worked examples, exercises and end-of-chapter problems illustrate a broad range of their applications in inorganic chemistry. The striking full-colour design includes a wealth of three-dimensional molecular and protein structures and photographs, enticing students to delve into the world of inorganic chemistry.
Throughout its four editions, Inorganic Chemistry has successfully given both teachers and students the tools with which to approach the subject confidently and with enjoyment. Environmental issues linked to inorganic chemistry, topics relating inorganic chemistry to biology and medicine, and the applications of inorganic chemicals in the laboratory, industry and daily life form the basis of a wide range of topic boxes in the book, helping students to appreciate the importance and relevance of the subject.
A strong pedagogic approach is at the heart of Inorganic Chemistry. While worked examples take students through calculations and exercises step by step, the sets of self-study exercises and end-of-chapter problems reinforce learning and develop subject knowledge and skills. The end-of-chapter problems include sets of 'overview problems', and problems entitled 'inorganic chemistry matters' which use everyday material to illustrate the relevance of the material in each chapter. Definitions panels and end-of-chapter checklists offer students excellent revision aids. Further reading suggestions, from topical articles to recent literature papers, encourage students to explore topics in more depth.
Cover Summary of contents Contents Guided tour Preface to the fourth edition Acknowledgements Chapter 1: Basic concepts: atoms 1.1 Introduction Inorganic chemistry: it is not an isolated branch of chemistry The aims of Chapters 1 and 2 1.2 Fundamental particles of an atom 1.3 Atomic number, mass number and isotopes Nuclides, atomic number and mass number Relative atomic mass Isotopes 1.4 Successes in early quantum theory Some important successes of classical quantum theory Bohr's theory of the atomic spectrum of hydrogen 1.5 An introduction to wave mechanics The wave-nature of electrons The uncertainty principle The Schrӧdinger wave equation 1.6 Atomic orbitals The quantum numbers n, l and ml The radial part of the wavefunction, R(r) The radial distribution function, 4πr2 R(r)2 The angular part of the wavefunction, A(θ, ɸ) Orbital energies in a hydrogen-like species Size of orbitals The spin quantum number and the magnetic spin quantum number The ground state of the hydrogen atom 1.7 Many-electron atoms The helium atom: two electrons Ground state electronic configurations: experimental data Penetration and shielding 1.8 The periodic table 1.9 The aufba u principle Ground state electronic configurations Valence and core electrons Diagrammatic representations of electronic configurations 1.10 Ionization energies and electron affinities Ionization energies Electron affinities Key Terms Further Reading Problems Overview Problems Inorganic Chemistry Matters Chapter 2: Basic concepts: molecules 2.1 Bonding models: an introduction A historical overview Lewis structures 2.2 Homonuclear diatomic molecules: valence bond (VB) theory Uses of the term homonuclear Covalent bond distance, covalent radius and van der Waals radius The valence bond (VB) model of bonding in H2 The valence bond (VB) model applied to F2, O2 and N2 2.3 Homonuclear diatomic molecules: molecular orbital (MO) theory An overview of the MO model Molecular orbital theory applied to the bonding in H2 The bonding in He2, Li2 and Be2 The bonding in F2 and O2 What happens if the s - p separation is small? 2.4 The octet rule and isoelectronic species The octet rule: first row p-block elements Isoelectronic species The octet rule: heavier p-block elements 2.5 Electronegativity values Pauling electronegativity values, χP Mulliken electronegativity values, χM Allred–Rochow electronegativity values, χAR Electronegativity: final remarks 2.6 Dipole moments Polar diatomic molecules Molecular dipole moments 2.7 MO theory: heteronuclear diatomic molecules Which orbital interactions should be considered? Hydrogen fluoride Carbon monoxide 2.8 Molecular shape and the VSEPR model Valence-shell electron-pair repulsion model Structures derived from a trigonal bipyramid Limitations of the VSEPR model 2.9 Molecular shape: stereoisomerism Square planar species Octahedral species Trigonal bipyramidal species High coordination numbers Double bonds Further Reading Problems Overview Problems Inorganic Chemistry Matters Chapter 3: Introduction to molecular symmetry 3.1 Introduction 3.2 Symmetry operations and symmetry elements Rotation about an n-fold axis of symmetry Reflection through a plane of symmetry (mirror plane) Reflection through a centre of symmetry (inversion centre) Rotation about an axis, followed by reflection through a plane perpendicular to this axis Identity operator 3.3 Successive operations 3.4 Point groups C1 point group C1v point group D1h point group Td, Oh or Ih point groups Determining the point group of a molecule or molecular ion 3.5 Character tables: an introduction 3.6 Why do we need to recognize symmetry elements? 3.7 Vibrational spectroscopy How many vibrational modes are there for a given molecular species? Selection rules for an infrared or Raman active mode of vibration Linear (D1h or C1v) and bent (C2v) triatomic molecules Bent molecules XY2: using the C2v character table XY3 molecules with D3h symmetry XY3 molecules with C3v symmetry XY4 molecules with Td or D4h symmetry XY6 molecules with Oh symmetry Metal carbonyl complexes, M(CO)n Metal carbonyl complexes M(CO)6-nXn Observing IR spectroscopic absorptions 3.8 Chiral molecules Key Terms Further Reading Problems Web-Based Problems Inorganic Chemistry Matters Chapter 4: Experimental techniques 4.1 Introduction 4.2 Separation and purification techniques Gas chromatography (GC) Liquid chromatography (LC) High-performance liquid chromatography (HPLC) Recrystallization 4.3 Elemental analysis CHN analysis by combustion Atomic absorption spectroscopy (AAS) 4.4 Compositional analysis: thermogravimetry (TG) 4.5 Mass spectrometry Electron ionization (EI) Fast atom bombardment (FAB) Matrix-assisted laser desorption ionization time-of-flight (MALDI-TOF) Electrospray ionization (ESI) 4.6 Infrared and Raman spectroscopies Energies and wavenumbers of molecular vibrations The Fourier transform infrared (FT-IR) spectrometer and sample preparation Diagnostic absorptions Deuterium/hydrogen exchange Raman spectroscopy 4.7 Electronic spectroscopy UV-VIS absorption spectroscopy Types of absorption Absorbance and the Beer–Lambert law Emission spectroscopy 4.8 Nuclear magnetic resonance (NMR) spectroscopy NMR active nuclei and isotope abundance Which nuclei are suitable for NMR spectroscopic studies? Resonance frequencies and chemical shifts Chemical shift ranges Solvents for solution studies Integration of signals and signal broadening Homonuclear spin–spin coupling: 1H–1H Heteronuclear spin–spin coupling: 13C–1H Case studies Stereochemically non-rigid species Exchange processes in solution 4.9 Electron paramagnetic resonance (EPR) spectroscopy What is EPR spectroscopy? The Zeeman electronic effect EPR spectra 4.10 Mössbauer spectroscopy The technique of Mössbauer spectroscopy What can isomer shift data tell us? 4.11 Structure determination: diffraction methods X-ray diffraction (XRD) Single crystal X-ray diffraction Powder X-ray diffraction Single crystal neutron diffraction Electron diffraction Low-energy electron diffraction (LEED) Structural databases 4.12 Photoelectron spectroscopy (PES, UPS, XPS, ESCA) 4.13 Computational methods Hartree–Fock theory Density functional theory Hückel MO theory Molecular mechanics (MM) Key Terms Important Acronyms: What do they stand for? Further Reading Problems Overview Problems Inorganic Chemistry Matters Chapter 5: Bonding in polyatomic molecules 5.1 Introduction 5.2 Valence bond theory: hybridization of atomic orbitals What is orbital hybridization? sp Hybridization: a scheme for linear species sp2 Hybridization: a scheme for trigonal planar species sp3 Hybridization: a scheme for tetrahedral and related species Other hybridization schemes 5.3 Valence bond theory: multiple bonding in polyatomic molecules C2H4 HCN BF3 5.4 Molecular orbital theory: the ligand group orbital approach and application to triatomic molecules Molecular orbital diagrams: moving from a diatomic to polyatomic species MO approach to bonding in linear XH2: symmetry matching by inspection MO approach to bonding in linear XH2: working from molecular symmetry A bent triatomic: H2O 5.5 Molecular orbital theory applied to the polyatomic molecules BH3, NH3 and CH4 BH3 NH3 CH4 A comparison of the MO and VB bonding models 5.6 Molecular orbital theory: bonding analyses soon become complicated 5.7 Molecular orbital theory: learning to use the theory objectively π-Bonding in CO2 [NO3]- SF6 Three-centre two-electron interactions A more advanced problem: B2H6 Key Terms Further Reading Problems Overview Problems Inorganic Chemistry Matters Chapter 6: Structures and energetics of metallic and ionic solids 6.1 Introduction 6.2 Packing of spheres Cubic and hexagonal close-packing The unit cell: hexagonal and cubic close-packing Interstitial holes: hexagonal and cubic close-packing Non-close-packing: simple cubic and body-centred cubic arrays 6.3 The packing-of-spheres model applied to the structures of elements Group 18 elements in the solid state H2 and F2 in the solid state Metallic elements in the solid state 6.4 Polymorphism in metals Polymorphism: phase changes in the solid state Phase diagrams 6.5 Metallic radii 6.6 Melting points and standard enthalpies of atomization of metals 6.7 Alloys and intermetallic compounds Substitutional alloys Interstitial alloys Intermetallic compounds 6.8 Bonding in metals and semiconductors Electrical conductivity and resistivity Band theory of metals and insulators The Fermi level Band theory of semiconductors 6.9 Semiconductors Intrinsic semiconductors Extrinsic (n- and p-type) semiconductors 6.10 Sizes of ions Ionic radii Periodic trends in ionic radii 6.11 Ionic lattices The rock salt (NaCl) structure type The caesium chloride (CsCl) structure type The fluorite (CaF2) structure type The antifluorite structure type The zinc blende (ZnS) structure type: a diamond type network The β-cristobalite (SiO2) structure type The wurtzite (ZnS) structure type The rutile (TiO2) structure type CdI2 and CdCl2: layer structures The perovskite (CaTiO3) structure type: a double oxide 6.12 Crystal structures of semiconductors 6.13 Lattice energy: estimates from an electrostatic model Coulombic attraction within an isolated ion-pair Coulombic interactions in an ionic lattice Born forces The Born–Lande´ equation Madelung constants Refinements to the Born–Lande´ equation Overview 6.14 Lattice energy: the Born–Haber cycle 6.15 Lattice energy: ‘calculated’ versus‘ experimental’ values 6.16 Applications of lattice energies Estimation of electron affinities Fluoride affinities Estimation of standard enthalpies of formation and disproportionation The Kapustinskii equation 6.17 Defects in solid state lattices Schottky defect Frenkel defect Experimental observation of Schottky and Frenkel defects Non-stoichiometric compounds Colour centres (F-centres) Thermodynamic effects of crystal defects Key Terms Further Reading Problems Overview Problems Inorganic Chemistry Matters Chapter 7: Acids, bases and ions in aqueous solution 7.1 Introduction 7.2 Properties of water Structure and hydrogen bonding The self-ionization of water Water as a Brønsted acid or base 7.3 Definitions and units in aqueous solution Molarity and molality Standard state Activity 7.4 Some Brønsted acids and bases Carboxylic acids: examples of mono-, di- and polybasic acids Inorganic acids Inorganic bases: hydroxides Inorganic bases: nitrogen bases 7.5 The energetics of acid dissociation in aqueous solution Hydrogen halides H2S, H2Se and H2Te 7.6 Trends within a series of oxoacids EOn(OH)m 7.7 Aquated cations: formation and acidic properties Water as a Lewis base Aquated cations as Brønsted acids 7.8 Amphoteric oxides and hydroxides Amphoteric behaviour Periodic trends in amphoteric properties 7.9 Solubilities of ionic salts Solubility and saturated solutions Sparingly soluble salts and solubility products The energetics of the dissolution of an ionic salt: ΔsolG° The energetics of the dissolution of an ionic salt: hydration of ions Solubilities: some concluding remarks 7.10 Common-ion effect 7.11 Coordination complexes: an introduction Definitions and terminology Investigating coordination complex formation 7.12 Stability constants of coordination complexes Determination of stability constants Trends in stepwise stability constants Thermodynamic considerations of complex formation: an introduction 7.13 Factors affecting the stabilities of complexes containing only monodentate ligands Ionic size and charge Hard and soft metal centres and ligands Key Terms Further Reading Problems Overview Problems Inorganic Chemistry Matters Chapter 8: Reduction and oxidation 8.1 Introduction Oxidation and reduction Oxidation states Stock nomenclature 8.2 Standard reduction potentials, E°, and relationships between E°, ΔG° and K Half-cells and galvanic cells Defining and using standard reduction potentials, E° Dependence of reduction potentials on cell conditions 8.3 The effect of complex formation or precipitation on Mz+ /M reduction potentials Half-cells involving silver halides Modifying the relative stabilities of different oxidation states of a metal 8.4 Disproportionation reactions Disproportionation Stabilizing species against disproportionation 8.5 Potential diagrams 8.6 Frost–Ebsworth diagrams Frost–Ebsworth diagrams and their relationship to potential diagrams Interpretation of Frost–Ebsworth diagrams 8.7 The relationships between standard reduction potentials and some other quantities Factors influencing the magnitudes of standard reduction potentials Values of ΔfGo for aqueous ions 8.8 Applications of redox reactions to the extraction of elements from their ores Ellingham diagrams Key Terms Important Thermodynamic Equations Further Reading Problems Overview Problems Inorganic Chemistry Matters Chapter 9: Non-aqueous media 9.1 Introduction 9.2 Relative permittivity 9.3 Energetics of ionic salt transfer from water to an organic solvent 9.4 Acid–base behaviour in non-aqueous solvents Strengths of acids and bases Levelling and differentiating effects ‘Acids’ in acidic solvents Acids and bases: a solvent-oriented definition Proton-containing and aprotic solvents 9.5 Liquid sulfur dioxide 9.6 Liquid ammonia Physical properties Self-ionization Reactions in liquid NH3 Solutions of s-block metals in liquid NH3 Redox reactions in liquid NH3 9.7 Liquid hydrogen fluoride Physical properties Acid–base behaviour in liquid HF Electrolysis in liquid HF 9.8 Sulfuric acid and fluorosulfonic acid Physical properties of sulfuric acid Acid–base behaviour in liquid H2SO4 Physical properties of fluorosulfonic acid 9.9 Superacids 9.10 Bromine trifluoride Physical properties Behaviour of fluoride salts and molecular fluorides in BrF3 Reactions in BrF3 9.11 Dinitrogen tetraoxide Physical properties Reactions in N2O4 9.12 Ionic liquids Molten salt solvent systems Ionic liquids at ambient temperatures 9.13 Supercritical fluids Properties of supercritical fluids and their uses as solvents Supercritical fluids as media for inorganic chemistry Key Terms Further Reading Problems Overview Problems Inorganic Chemistry Matter Chapter 10: Hydrogen 10.1 Hydrogen: the simplest atom 10.2 The H+ and H+ ions The hydrogen ion (proton) The hydride ion 10.3 Isotopes of hydrogen Protium and deuterium Kinetic isotope effects Deuterated compounds Tritium 10.4 Dihydrogen Occurrence Physical properties Synthesis and uses Reactivity 10.5 Polar and non-polar E-H bonds 10.6 Hydrogen bonding The hydrogen bond Trends in boiling points, melting points and enthalpies of vaporization for p-block binary hydrides Infrared spectroscopy Solid state structures Hydrogen bonding in biological systems 10.7 Binary hydrides: classification and general properties Classification Metallic hydrides Saline hydrides Molecular hydrides and complexes derived from them Covalent hydrides with extended structures Key Terms Further Reading Problems Overview Problems Inorganic Chemistry Matters Chapter 11: Group 1: the alkali metals 11.1 Introduction 11.2 Occurrence, extraction and uses Occurrence Extraction Major uses of the alkali metals and their compounds 11.3 Physical properties General properties Atomic spectra and flame tests Radioactive isotopes NMR active nuclei 11.4 The metals Appearance Reactivity 11.5 Halides 11.6 Oxides and hydroxides Oxides, peroxides, superoxides, suboxides and ozonides Hydroxides 11.7 Salts of oxoacids: carbonates and hydrogencarbonates 11.8 Aqueous solution chemistry and macrocyclic complexes Hydrated ions Complex ions 11.9 Non-aqueous coordination chemistry Key Terms Further Reading Problems Overview Problems Inorganic Chemistry Matters Chapter 12: The group 2 metals 12.1 Introduction 12.2 Occurrence, extraction and uses Occurrence Extraction Major uses of the group 2 metals and their compounds 12.3 Physical properties General properties Flame tests Radioactive isotopes 12.4 The metals Appearance Reactivity 12.5 Halides Beryllium halides Halides of Mg, Ca, Sr and Ba 12.6 Oxides and hydroxides Oxides and peroxides Hydroxides 12.7 Salts of oxoacids 12.8 Complex ions in aqueous solution Aqua species of beryllium Aqua species of Mg2+, Ca2+, Sr2+and Ba2+ Complexes with ligands other than water 12.9 Complexes with amido or a lkoxy ligands 12.10 Diagonal relationships between Li and Mg, and between Be and Al Lithium and magnesium Beryllium and aluminium Key Terms Further Reading Problems Overview Problems Inorganic Chemistry Matters Chapter 13: The group 13 elements 13.1 Introduction 13.2 Occurrence, extraction and uses Occurrence Extraction Major uses of the group 13 elements and their compounds 13.3 Physical properties Electronic configurations and oxidation states NMR active nuclei 13.4 The elements Appearance Structures of the elements Reactivity 13.5 Simple hydrides Neutral hydrides The [MH4]- ions 13.6 Halides and complex halides Boron halides: BX3 and B2X4 Al(III), Ga(III), In(III) and Tl(III) halides and their complexes Lower oxidation state Al, Ga, In and Tl halides 13.7 Oxides, oxoacids, oxoanions and hydroxides Boron oxides, oxoacids and oxoanions Aluminium oxides, oxoacids, oxoanions and hydroxides Oxides of Ga, In and Tl 13.8 Compounds containing nitrogen Nitrides Ternary boron nitrides Molecular species containing B–N or B–P bonds Molecular species containing group 13 metal–nitrogen bonds 13.9 Aluminium to thallium: salts of oxoacids, aqueous solution chemistry and complexes Aluminium sulfate and alums Aqua ions Redox reactions in aqueous solution Coordination complexes of the M3+ions 13.10 Metal borides 13.11 Electron-deficient borane and carbaborane clusters: an introduction Key Terms Further Reading Problems Overview Problems Inorganic Chemistry Matters Chapter 14: The group 14 elements 14.1 Introduction 14.2 Occurrence, extraction and uses Occurrence Extraction and manufacture 14.3 Physical properties Ionization energies and cation formation Some energetic and bonding considerations NMR active nuclei Mössbauer spectroscopy 14.4 Allotropes of carbon Graphite and diamond: structure and properties Graphite: intercalation compounds Fullerenes: synthesis and structure Fullerenes: reactivity Carbon nanotubes 14.5 Structural and chemical properties of silicon, germanium, tin and lead Structures Chemical properties 14.6 Hydrides Binary hydrides Halohydrides of silicon and germanium 14.7 Carbides, silicides, germides, stannides and plumbides Carbides Silicides Zintl ions containing Si, Ge, Sn and Pb 14.8 Halides and complex halides Carbon halides Silicon halides Halides of germanium, tin and lead 14.9 Oxides, oxoacids and hydroxides Oxides and oxoacids of carbon Silica, silicates and aluminosilicates Oxides, hydroxides and oxoacids of germanium, tin and lead 14.10 Siloxanes and polysiloxanes (silicones) 14.11 Sulfides 14.12 Cyanogen, silicon nitride and tin nitride Cyanogen and its derivatives Silicon nitride Tin(IV) nitride 14.13 Aqueous solution chemistry and salts of oxoacids of germanium, tin and lead Key Terms Further Reading Problems Overview Problems Inorganic Chemistry Matters Chapter 15: The group 15 elements 15.1 Introduction 15.2 Occurrence, extraction and uses Occurrence Extraction Uses 15.3 Physical properties Bonding considerations NMR active nuclei Radioactive isotopes 15.4 The elements Nitrogen Phosphorus Arsenic, antimony and bismuth 15.5 Hydrides Trihydrides, EH3 (E-N, P, As, Sb and Bi) Hydrides E2H4 (E=N, P, As) Chloramine and hydroxylamine Hydrogen azide and azide salts 15.6 Nitrides, phosphides, arsenides, antimonides and bismuthides Nitrides Phosphides Arsenides, antimonides and bismuthides 15.7 Halides, oxohalides and complex halides Nitrogen halides Oxofluorides and oxochlorides of nitrogen Phosphorus halides Phosphoryl trichloride, POCl3 Arsenic and antimony halides Bismuth halides 15.8 Oxides of nitrogen Dinitrogen monoxide, N2O Nitrogen monoxide, NO Dinitrogen trioxide, N2O3 Dinitrogen tetraoxide, N2O4, and nitrogen dioxide, NO2 Dinitrogen pentaoxide, N2O5 15.9 Oxoacids of nitrogen Isomers of H2N2O2 Nitrous acid, HNO2 Nitric acid, HNO3, and its derivatives 15.10 Oxides of phosphorus, arsenic, antimony and bismuth Oxides of phosphorus Oxides of arsenic, antimony and bismuth 15.11 Oxoacids of phosphorus Phosphinic acid, H3PO2 Phosphonic acid, H3PO3 Hypodiphosphoric acid, H4P2O6 Phosphoric acid, H3PO4, and its derivatives Chiral phosphate anions 15.12 Oxoacids of arsenic, antimony and bismuth 15.13 Phosphazenes 15.14 Sulfides and selenides Sulfides and selenides of phosphorus Arsenic, antimony and bismuth sulfides 15.15 Aqueous solution chemistry and complexes Key Terms Further Reading Problems Overview Problems Inorganic Chemistry Matters Chapter 16: The group 16 elements 16.1 Introduction 16.2 Occurrence, extraction and uses Occurrence Extraction Uses 16.3 Physical properties and bonding considerations NMR active nuclei and isotopes as tracers 16.4 The elements Dioxygen Ozone Sulfur: allotropes Sulfur: reactivity Selenium and tellurium 16.5 Hydrides Water, H2O Hydrogen peroxide, H2O2 Hydrides H2E (E=S, Se, Te) Polysulfanes 16.6 Metal sulfides, polysulfides, polyselenides and polytellurides Sulfides Polysulfides Polyselenides and polytellurides 16.7 Halides, oxohalides and complex halides Oxygen fluorides Sulfur fluorides and oxofluorides Sulfur chlorides and oxochlorides Halides of selenium and tellurium 16.8 Oxides Oxides of sulfur Oxides of selenium and tellurium 16.9 Oxoacids and their salts Dithionous acid, H2S2O4 Sulfurous and disulfurous acids, H2SO3 and H2S2O5 Dithionic acid, H2S2O6 Sulfuric acid, H2SO4 Fluoro- and chlorosulfonic acids, HSO3F and HSO3Cl Polyoxoacids with S-O-S units Peroxysulfuric acids, H2S2O8 and H2SO5 Thiosulfuric acid, H2S2O3, and polythionates Oxoacids of selenium and tellurium 16.10 Compounds of sulfur and seleniumwith nitrogen Sulfur–nitrogen compounds Tetraselenium tetranitride 16.11 Aqueous solution chemistry of sulfur, selenium and tellurium Key Terms Further Reading Problems Overview Problems Inorganic Chemistry Matters Chapter 17: The group 17 elements 17.1 Introduction Fluorine, chlorine, bromine and iodine Astatine 17.2 Occurrence, extraction and uses Occurrence Extraction Uses 17.3 Physical properties and bonding considerations NMR active nuclei and isotopes as tracers 17.4 The elements Difluorine Dichlorine, dibromine and diiodine Charge transfer complexes Clathrates 17.5 Hydrogen halides 17.6 Metal halides: structures and energetics 17.7 Interhalogen compounds and polyhalogen ions Interhalogen compounds Bonding in [XY2]-ions Polyhalogen cations Polyhalide anions 17.8 Oxides and oxofluorides of chlorine, bromine and iodine Oxides Oxofluorides 17.9 Oxoacids and their salts Hypofluorous acid, HOF Oxoacids of chlorine, bromine and iodine 17.10 Aqueous solution chemistry Key Terms Further Reading Problems Overview Problems Inorganic Chemistry Matters Chapter 18: The group 18 elements 18.1 Introduction 18.2 Occurrence, extraction and uses Occurrence Extraction Uses 18.3 Physical properties NMR active nuclei 18.4 Compounds of xenon Fluorides Chlorides Oxides Oxofluorides and oxochlorides Other compounds of xenon 18.5 Compounds of argon, krypton and radon Further Reading Problems Overview Problems Inorganic Chemistry Matters Chapter 19: d-Block metal chemistry: general considerations 19.1 Topic overview 19.2 Ground state electronic configurations d-Block metals versus transition elements Electronic configurations 19.3 Physical properties 19.4 The reactivity of the metals 19.5 Characteristic properties: a general perspective Colour Paramagnetism Complex formation Variable oxidation states 19.6 Electroneutrality principle 19.7 Coordination numbers and geometries The Kepert model Coordination numbers in the solid state Coordination number 2 Coordination number 3 Coordination number 4 Coordination number 5 Coordination number 6 Coordination number 7 Coordination number 8 Coordination number 9 Coordination numbers of 10 and above 19.8 Isomerism in d-block metal complexes Structural isomerism: ionization isomers Structural isomerism: hydration isomers Structural isomerism: coordination isomerism Structural isomerism: linkage isomerism Stereoisomerism: diastereoisomers Stereoisomerism: enantiomers Key Terms Further Reading Problems Overview Problems Inorganic Chemistry Matters Chapter 20: d-Block metal chemistry: coordination complexes 20.1 Introduction High- and low-spin states 20.2 Bonding in d-block metal complexes: valence bond theory Hybridization schemes The limitations of VB theory 20.3 Crystal field theory The octahedral crystal field Crystal field stabilization energy: high- and low-spin octahedral complexes Jahn-Teller distortions The tetrahedral crystal field The square planar crystal field Other crystal fields Crystal field theory: uses and limitations 20.4 Molecular orbital theory: octahedral complexes Complexes with no metal-ligand π-bonding Complexes with metal-ligand π-bonding 20.5 Ligand field theory 20.6 Describing electrons in multi-electron systems Quantum numbers L and ML for multi-electron species Quantum numbers S and MS for multi-electron species Microstates and term symbols The quantum numbers J and MJ Ground states of elements with Z=5 1-10 The d2 configuration 20.7 Electronic spectra: absorption Spectral features Charge transfer absorptions Selection rules Electronic absorption spectra of octahedral and tetrahedral complexes Interpretation of electronic absorption spectra: use of Racah parameters Interpretation of electronic absorption spectra: Tanabe-Sugano diagrams 20.8 Electronic spectra: emission 20.9 Evidence for metal-ligand covalent bonding The nephelauxetic effect EPR spectroscopy 20.10 Magnetic properties Magnetic susceptibility and the spin-only formula Spin and orbital contributions to the magnetic moment The effects of temperature on μeff Spin crossover Ferromagnetism, antiferromagnetism and ferrimagnetism 20.11 Thermodynamic aspects: ligand field stabilization energies (LFSE) Trends in LFSE Lattice energies and hydration energies of Mn+ions Octahedral versus tetrahedral coordination: spinels 20.12 Thermodynamic aspects: the Irving–Williams series 20.13 Thermodynamic aspects: oxidation states in aqueous solution Key Terms Further Reading Problems Overview Problems Inorganic Chemistry Matters Chapter 21: d-Block metal chemistry: the first row metals 21.1 Introduction 21.2 Occurrence, extraction and uses 21.3 Physical properties: an overview 21.4 Group 3: scandium The metal Scandium(III) 21.5 Group 4: titanium The metal Titanium(IV) Titanium(III) Low oxidation states 21.6 Group 5: vanadium The metal Vanadium(V) Vanadium(IV) Vanadium(III) Vanadium(II) 21.7 Group 6: chromium The metal Chromium(VI) Chromium(V) and chromium(IV) Chromium(III) Chromium(II) Chromium–chromium multiple bonds 21.8 Group 7: manganese The metal Manganese(VII) Manganese(VI) Manganese(V) Manganese(IV) Manganese(III) Manganese(II) Manganese(I) 21.9 Group 8: iron The metal Iron(VI), iron(V) and iron(IV) Iron(III) Iron(II) Iron in low oxidation states 21.10 Group 9: cobalt The metal Cobalt(IV) Cobalt(III) Cobalt(II) 21.11 Group 10: nickel The metal Nickel(IV) and nickel(III) Nickel(II) Nickel(I) 21.12 Group 11: copper The metal Copper(IV) and copper(III) Copper(II) Copper(I) 21.13 Group 12: zinc The metal Zinc(II) Zinc(I) Key Terms Further Reading Problems Overview Problems Inorganic Chemistry Matters Chapter 22: d-Block metal chemistry: the heavier metals 22.1 Introduction 22.2 Occurrence, extraction and uses 22.3 Physical properties Effects of the lanthanoid contraction Coordination numbers NMR active nuclei 22.4 Group 3: yttrium The metal Yttrium(III) 22.5 Group 4: zirconium and hafnium The metals Zirconium(IV) and hafnium(IV) Lower oxidation states of zirconium and hafnium Zirconium clusters 22.6 Group 5: niobium and tantalum The metals Niobium(V) and tantalum(V) Niobium(IV) and tantalum(IV) Lower oxidation state halides 22.7 Group 6: molybdenum and tungsten The metals Molybdenum(VI) and tungsten(VI) Molybdenum(V) and tungsten(V) Molybdenum(IV) and tungsten(IV) Molybdenum(III) and tungsten(III) Molybdenum(II) and tungsten(II) 22.8 Group 7: technetium and rhenium The metals High oxidation states of technetium and rhenium: M(VII), M(VI) and M(V) Technetium(IV) and rhenium(IV) Technetium(III) and rhenium(III) Technetium(I) and rhenium(I) 22.9 Group 8: ruthenium and osmium The metals High oxidation states of ruthenium and osmium:M(VIII), M(VII) and M(VI) Ruthenium(V), (IV) and osmium(V), (IV) Ruthenium(III) and osmium(III) Ruthenium(II) and osmium(II) Mixed-valence ruthenium complexes 22.10 Group 9: rhodium and iridium High oxidation states of rhodium and iridium: M(VI) and M(V) Rhodium(IV) and iridium(IV) Rhodium(III) and iridium(III) Rhodium(II) and iridium(II) Rhodium(I) and iridium(I) 22.11 Group 10: palladium and platinum The metals The highest oxidation states: M(VI) and M(V) Palladium(IV) and platinum(IV) Palladium(III), platinum(III) and mixed-valence complexes Palladium(II) and platinum(II) Platinum(–II) 22.12 Group 11: silver and gold The metals Gold(V) and silver(V) Gold(III) and silver(III) Gold(II) and silver(II) Gold(I) and silver(I) Gold(-I) and silver(-I) 22.13 Group 12: cadmium and mercury The metals Cadmium(II) Mercury(II) Mercury(I) Further Reading Problems Overview Problems Inorganic Chemistry Matters Chapter 23: Organometallic compounds of s- and p-block elements 23.1 Introduction 23.2 Group 1: alkali metal organometallics 23.3 Group 2 organometallics Beryllium Magnesium Calcium, strontium and barium 23.4 Group 13 Boron Aluminium Gallium, indium and thallium 23.5 Group 14 Silicon Germanium Tin Lead Coparallel and tilted C5-rings in group 14 metallocenes 23.6 Group 15 Bonding aspects and E=E bond formation Arsenic, antimony and bismuth 23.7 Group 16 Selenium and tellurium Key Terms Further Reading Problems Overview Problems Inorganic Chemistry Matters Chapter 24: Organometallic compounds of d-block elements 24.1 Introduction 24.2 Common types of ligand: bonding and spectroscopy σ-Bonded alkyl, aryl and related ligands Carbonyl ligands Hydride ligands Phosphane and related ligands π-Bonded organic ligands Nitrogen monoxide Dinitrogen Dihydrogen 24.3 The 18-electron rule 24.4 Metal carbonyls: synthesis, physical properties and structure Synthesis and physical properties Structures 24.5 The isolobal principle and application of Wade’s rules 24.6 Total valence electron counts in d-block organometallic clusters Single cage structures Condensed cages Limitations of total valence counting schemes 24.7 Types of organometallic reactions Substitution of CO ligands Oxidative addition Alkyl and hydrogen migrations β-Hydrogen elimination α-Hydrogen abstraction Summary 24.8 Metal carbonyls: selected reactions 24.9 Metal carbonyl hydrides and halides 24.10 Alkyl, aryl, alkene and alkyne complexes σ-Bonded alkyl and aryl ligands Alkene ligands Alkyne ligands 24.11 Allyl and buta-1,3-diene complexes Allyl and related ligands Buta-1,3-diene and related ligands 24.12 Carbene and carbyne complexes 24.13 Complexes containing n5-cyclopentadienyl ligands Ferrocene and other metallocenes (n5-Cp)2Fe2(CO)4 and derivatives 24.14 Complexes containing n6-and n7-ligands n6-Arene ligands Cycloheptatriene and derived ligands 24.15 Complexes containing the n4-cyclobutadiene ligand Key Terms Further Reading Problems Overview Problems Inorganic Chemistry Matters Chapter 25: Catalysis and some industrial processes 25.1 Introduction and definitions 25.2 Catalysis: introductory concepts Energy profiles for a reaction: catalysed versus non-catalysed Catalytic cycles Choosing a catalyst 25.3 Homogeneous catalysis: alkene (olefin) and alkyne metathesis 25.4 Homogeneous catalytic reduction of N2 to NH3 25.5 Homogeneous catalysis: industrial applications Alkene hydrogenation Monsanto and Cativa acetic acid syntheses Tennessee–Eastman acetic anhydride process Hydroformylation (Oxo-process) Alkene oligomerization 25.6 Homogeneous catalyst development Polymer-supported catalysts Biphasic catalysis d-Block organometallic clusters as homogeneous catalysts 25.7 Heterogeneous catalysis: surfaces and interactions with adsorbates 25.8 Heterogeneous catalysis: commercial applications Alkene polymerization: Ziegler–Natta catalysis and metallocene catalysts Fischer–Tropsch carbon chain growth Haber process Production of SO3 in the Contact process Catalytic converters Zeolites as catalysts for organic transformations: uses of ZSM-5 25.9 Heterogeneous catalysis: organometallic cluster models Key Terms Further Reading Problems Overview Problems Inorganic Chemistry Matters Chapter 26: d-Block metal complexes: reaction mechanisms 26.1 Introduction 26.2 Ligand substitutions: some general points Kinetically inert and labile complexes Stoichiometric equations say nothing about mechanism Types of substitution mechanism Activation parameters 26.3 Substitution in square planar complexes Rate equations, mechanism and the trans-effect Ligand nucleophilicity 26.4 Substitution and racemization in octahedral complexes Water exchange The Eigen–Wilkins mechanism Stereochemistry of substitution Base-catalysed hydrolysis Isomerization and racemization of octahedral complexes 26.5 Electron-transfer processes Inner-sphere mechanism Outer-sphere mechanism Key Terms Further Reading Problems Overview Problems Inorganic Chemistry Matters Chapter 27: The f-block metals: lanthanoids and actinoids 27.1 Introduction 27.2 f-Orbitals and oxidation states 27.3 Atom and ion sizes The lanthanoid contraction Coordination numbers 27.4 Spectroscopic and magnetic properties Electronic spectra and magnetic moments: lanthanoids Luminescence of lanthanoid complexes Electronic spectra and magnetic moments: actinoids 27.5 Sources of the lanthanoids and actinoids The actinoids 27.6 Lanthanoid metals 27.7 Inorganic compounds and coordination complexes of the lanthanoids Halides Hydroxides and oxides Complexes of Ln(III) 27.8 Organometallic complexes of the lanthanoids σ-Bonded complexes Cyclopentadienyl complexes Bis(arene) derivatives Complexes containing the n8-cyclooctatetraenyl ligand 27.9 The actinoid metals 27.10 Inorganic compounds and coordination complexes of thorium, uranium and plutonium Thorium Uranium Plutonium 27.11 Organometallic complexes of thorium and uranium σ-Bonded complexes Cyclopentadienyl derivatives Complexes containing the n8-cyclooctatetraenyl ligand Key Terms Further Reading Problems Overview Problems Inorganic Chemistry Matters Chapter 28: Inorganic materials and nanotechnology 28.1 Introduction 28.2 Electrical conductivity in ionic solids Sodium and lithium ion conductors d-Block metal(II) oxides 28.3 Transparent conducting oxides and their applications in devices Sn-doped In2O3 (ITO) and F-doped SnO2 (FTO) Dye-sensitized solar cells (DSCs) Solid state lighting: OLEDs Solid state lighting: LECs 28.4 Superconductivity Superconductors: early examples and basic theory High-temperature superconductors Iron-based superconductors Chevrel phases Superconducting properties of MgB2 Applications of superconductors 28.5 Ceramic materials: colour pigments White pigments (opacifiers) Adding colour 28.6 Chemical vapour deposition (CVD) High-purity silicon for semiconductors α-Boron nitride Silicon nitride and carbide III–V Semiconductors Metal deposition Ceramic coatings Perovskites and cuprate superconductors 28.7 Inorganic fibres Boron fibres Carbon fibres Silicon carbide fibres Alumina fibres 28.8 Graphene 28.9 Carbon nanotubes Key Terms Further Reading Problems Overview Problems Inorganic Chemistry Matters Chapter 29: The trace metals of life 29.1 Introduction Amino acids, peptides and proteins: some terminology 29.2 Metal storage and transportb: Fe, Cu, Zn and V Iron storage and transport Metallothioneins: transporting some toxic metals 29.3 Dealing with O2 Haemoglobin and myoglobin Haemocyanin Haemerythrin Cytochromes P-450 29.4 Biological redox processes Blue copper proteins The mitochondrial electron-transfer chain Iron–sulfur proteins Cytochromes 29.5 The Zn2+ion: Nature’s Lewis acid Carbonic anhydrase II Carboxypeptidase A Carboxypeptidase G2 Cobalt-for-zinc ion substitution Key Terms Further Reading Problems Overview Problems Inorganic Chemistry Matters Appendices Appendix 1: Greek letters with pronunciations Appendix 2: Abbreviations and symbols for quantities and units Appendix 3: Selected character tables Appendix 4: The electromagnetic spectrum Appendix 5: Naturally occurring isotopes and their abundances Appendix 6: Van der Waals, metallic, covalent and ionic radii Appendix 7: Pauling electronegativity values (XP) for selected elements of the periodic table Appendix 8: Ground state electronic configurations of the elements and ionization energies Appendix 9: Electron affinities Appendix 10: Standard enthalpies of atomization(ΔaH°) of the elements at 298 K Appendix 11: Selected standard reduction potentials (298 K) Appendix 12: Selected bond enthalpy terms Answers to non-descriptive problems Index