دسترسی نامحدود
برای کاربرانی که ثبت نام کرده اند
برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید
در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید
برای کاربرانی که ثبت نام کرده اند
درصورت عدم همخوانی توضیحات با کتاب
از ساعت 7 صبح تا 10 شب
دسته بندی: علم شیمی ویرایش: 1st ed. 2020 نویسندگان: WeiQiang Pang (editor), Luigi T. DeLuca (editor), Alejandro A. Gromov (editor), Adam S. Cumming (editor) سری: ISBN (شابک) : 9811548307, 9789811548307 ناشر: Springer سال نشر: 2020 تعداد صفحات: 556 زبان: English فرمت فایل : PDF (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود) حجم فایل: 23 مگابایت
در صورت تبدیل فایل کتاب Innovative Energetic Materials: Properties, Combustion Performance and Application به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.
توجه داشته باشید کتاب مواد انرژی زا و نوآورانه: خصوصیات ، عملکرد احتراق و کاربرد نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.
این کتاب بر عملکرد احتراق و کاربرد مواد پرانرژی نوآورانه برای پیشرانه موشک فضایی جامد و هیبریدی تمرکز دارد. این یک نمای کلی از فنآوریهای پیشرفته در زمینه مواد پرانرژی نوآورانه و عملکرد احتراق ارائه میکند، روشهای مدلسازی و تشخیص تجمع/انباشتگی مواد فلزی پرانرژی فعال در پیشرانههای جامد را معرفی میکند، و کاربردهای بالقوه مواد پرانرژی نوآورانه در جامدات و مواد جامد را بررسی میکند. پیشرانه هیبریدی علاوه بر این، راه حل های گام به گام برای مسائل نمونه را نیز ارائه می دهد تا به خوانندگان کمک کند تا درک خوبی از عملکرد احتراق و کاربردهای بالقوه مواد پرانرژی نوآورانه در رانش فضایی به دست آورند. این کتاب به عنوان یک منبع عالی برای محققان و مهندسان در زمینه پیشران، مواد منفجره، و مواد آتشزی عمل میکند.
This book focuses on the combustion performance and application of innovative energetic materials for solid and hybrid space rocket propulsion. It provides a comprehensive overview of advanced technologies in the field of innovative energetic materials and combustion performance, introduces methods of modeling and diagnosing the aggregation/agglomeration of active energetic metal materials in solid propellants, and investigates the potential applications of innovative energetic materials in solid and hybrid propulsion. In addition, it also provides step-by-step solutions for sample problems to help readers gain a good understanding of combustion performance and potential applications of innovative energetic materials in space propulsion. This book serves as an excellent resource for researchers and engineers in the field of propellants, explosives, and pyrotechnics.
Preface Contents Editors and Contributors Part I Properties of Innovative Energetic Materials 1 Study of a Concept of Energetic Materials Consisting of a Solid Fuel Matrix Containing Liquid Oxidizer 1.1 Introduction 1.2 Theoretical Performance 1.3 Combustion Model 1.4 Mass Conservation 1.5 Fuel/Oxidizer Energy Balances 1.6 Characteristic Cycle Times 1.7 Results 1.8 Summary References 2 Enhancing Micrometric Aluminum Reactivity by Mechanical Activation 2.1 Introduction 2.2 Mechanical Activation 2.2.1 General Considerations on Powder Design 2.2.2 Case Study #1: Activated Ingredients for HREs 2.2.3 Case Study #2: Activated Ingredients for SRMs 2.2.4 Production of Mechanically Activated Powders 2.3 Metal Ingredients Characterization 2.3.1 Morphology Analysis 2.3.2 Metal Content 2.3.3 Thermogravimetry 2.4 Case Study #1: Experimental Tests in Solid Fuels 2.4.1 Material 2.4.2 HYF Ballistics 2.5 Case Study #2: Experimental Tests in Solid Propellants 2.5.1 Material 2.5.2 SP Ballistics 2.5.3 Metal Agglomeration 2.6 Conclusions and Future Developments References 3 Preparation and Energetic Properties of Nanothermites Based on Core–Shell Structure 3.1 Introduction 3.2 Fuel–Oxidizer Core–shell Nanothermites 3.2.1 Synthesis Strategies for Fuel–Oxidizer Nanothermites 3.2.2 Energetic Performance for Fuel–Oxidizer Core–shell Nanothermites 3.3 Oxidizer–Fuel Core–shell Nanothermites 3.3.1 Synthesis Strategies for Oxidizer–Fuel Nanothermites 3.3.2 Energetic Performance for Oxidizer–Fuel Core–shell Nanothermites 3.4 Concluding Remarks and Suggestions References 4 Current Problems in Energetic Materials Ignition Studies 4.1 Introduction 4.2 Terminology and Physical Pattern of the EM Ignition 4.3 Brief Review of Experimental Methods to Record EM Transient Combustion Behavior 4.4 Theoretical Simulation of the EM Inflammation and Ignition 4.5 Ignition Simulation of EM with Open Reacting Surface 4.6 Use of Ignition Delay Data for Deriving the High-Temperature Kinetic Parameters of Condensed-Phase Reaction 4.7 Ignition Simulation for EMs with Shielded Reacting Surface 4.7.1 Opaque EMs 4.7.2 Semitransparent EM 4.8 Concluding Remarks References Part II Combustion Performance of Energetic Materials 5 Transient Burning of nAl-Loaded Solid Rocket Propellants 5.1 Background 5.2 Motivations and Objectives 5.3 Introduction to Nanoenergetic Materials 5.3.1 Historical Background and Chemical Energy 5.3.2 Ultrafine Versus Nano-Sized Particles 5.3.3 The Energy Excess Illusion 5.3.4 First-Generation Versus Advanced nEM 5.3.5 Energetic Applications 5.4 Augmented Steady Ballistic Properties 5.5 Effects of nAl on Unsteady Burning 5.5.1 Fast Depressurization Extinction 5.5.2 Microanalyses of Extinguished Propellant Surfaces 5.5.3 Pressure Deflagration Limit (PDL) 5.5.4 Subatmospheric Burning 5.6 More Transient Burning 5.6.1 Acoustic Damping 5.6.2 Recoil Force 5.6.3 Summary Effects nAl on Unsteady Burning 5.7 Ignition 5.7.1 Meaning of Propellant Flammability 5.7.2 Ignition of AP-Based µAluminized Formulations 5.7.3 Ignition of Al Particles 5.7.4 Effects of nAl on Propellant Ignition 5.7.5 Effects of nAlloy or nBiMe on Propellant Ignition 5.7.6 Summary Effects nAl on Propellant Ignition 5.8 Concluding Remarks References 6 Aluminized Solid Propellants Loaded with Metals and Metal Oxides: Characterization, Thermal Behavior, and Combustion 6.1 Introduction 6.2 Properties of Metal and Metal Oxide Powdery Additives 6.2.1 Chemical and Phase Composition 6.2.2 Size Distribution and Morphological Properties 6.2.3 Reactivity Parameters 6.2.4 Compatibility of Propellant Components with Powdery Additive 6.3 Energy, Kinetic, and Ballistic Properties of Metallized Solid Propellants with Metals and Metal Oxides 6.3.1 Ballistic Properties of Metallized Propellants with Aluminum Nanopowder Additive 6.3.2 Ballistic Properties of Metallized Propellants with Metal Nanopowder Additive 6.3.3 Ballistic Properties of Metallized Propellants with Metal Oxide Nanopowder Additive 6.3.4 Comparison of Effects of Metal and Metal Oxide Additives 6.4 Conclusion References 7 Bimetal Fuels for Energetic Materials 7.1 Introduction 7.2 Experimental Methods 7.2.1 The Tested EM Samples 7.2.2 Ignition of EM 7.2.3 Combustion of EM 7.2.4 The Properties of CCP 7.3 Results and Discussion 7.3.1 Thermal Analysis Data 7.3.2 Ignition Parameters 7.3.3 Combustion Characteristics of EM 7.3.4 Characteristics of CCP 7.4 Conclusions References 8 Combustion/Decomposition Behavior of HAN Under the Effects of Nanoporous Activated Carbon 8.1 Introduction 8.1.1 Hydroxylammonium Nitrate 8.1.2 Carbonized Rise Husk 8.2 Experimental Part 8.2.1 Burning Tests 8.2.2 The Differential Thermal Analysis 8.3 Results and Discussion 8.3.1 The Combustion Experiments in High-Pressure Chamber 8.3.2 Experimental Studies of Thermal Analysis of HAN Decomposition with AC by DTA–TG 8.3.3 The Results of EI–MS 8.4 Conclusion References 9 Combustion of Ammonium Perchlorate: New Findings 9.1 Introduction 9.2 Combustion of Ammonium Perchlorate Monopropellant 9.2.1 Literature on Combustion of Ammonium Perchlorate 9.2.2 LPDL of Composite Solid Propellants 9.2.3 Experiments 9.2.4 Results and Discussion 9.3 Combustion of AP with Additives 9.3.1 Introduction 9.3.2 Literature Review on AP with Additives 9.3.3 Results and Discussion 9.4 Modeling of AP Monopropellant Combustion 9.4.1 Combustion Model 9.4.2 Governing Equations 9.4.3 Kinetic Details 9.4.4 Initial and Boundary Conditions 9.4.5 Choice of Parameters and Intrinsic Stability 9.4.6 New Parameters of AP Monopropellant Combustion Model 9.4.7 Effect of Heat Loss on AP Monopropellant Combustion 9.5 Summary References 10 Recent Achievements and Future Challenges on the Modeling Study of AP-Based Propellants 10.1 Introduction 10.2 Modeling of AP Monopropellant Combustion 10.2.1 Theoretical Formulations 10.2.2 Detailed Gas-Phase Kinetics 10.2.3 Comparison of Modeling Results 10.3 Modeling of AP-Based Composite Propellants Combustion 10.3.1 Gas-Phase Controlled Models 10.3.2 Condensed-Phase Models 10.3.3 One-Dimensional Modeling of AP Composites Combustion 10.3.4 Two-Dimensional Modeling of AP Composites Combustion 10.3.5 Multidimensional Modeling of AP Composites Combustion (Molecular Dynamics Simulations) 10.4 Conclusions References 11 Survey of Low-Burn-Rate Solid Rocket Propellants 11.1 Introduction 11.2 Solid Propellant Burn Rate–What Impacts It? 11.3 Oxidizer Particle Type and Packing 11.4 Impact of SRM Design 11.5 Impact of Grain Manufacturing Processes 11.6 Motor Firing Conditions 11.7 Binder Utilisation 11.8 Use of Alternative Oxidizers to Ammonium Perchlorate and Energetic Materials 11.8.1 Ammonium Nitrate 11.8.2 HMX 11.8.3 RDX 11.8.4 Other Oxidizers 11.9 Burn Rate Suppressants 11.9.1 Oxamide 11.9.2 Ammonium Salts 11.9.3 Lithium Fluoride 11.10 Applications of Low-Burn-Rate Solid Rocket Propellant 11.10.1 Missiles and Artillery 11.10.2 Intercontinental Ballistic Missiles 11.10.3 Drones 11.10.4 Gas Generators 11.10.5 Space Applications 11.11 Outlook on Further Propellant Development and Utilisation 11.12 Conclusions References 12 Burning Rate of PVC—Plastisol Composite Propellants and Correlation Between Closed Vessel and Strand Burner Tests Data 12.1 Introduction 12.2 Experimental 12.2.1 Formulation and Raw Ingredients 12.2.2 Solid Rocket Propellant Burning Rate Determination 12.2.3 Strand Burner Test 12.2.4 Closed Vessel Test 12.2.5 Closed Vessel with Operculum Test 12.3 Results and Discussion 12.3.1 Correlation Between the Results of the Two Different Burning Rate Tests 12.3.2 Strand Burner 12.3.3 Closed Vessel 12.3.4 Influence of the Nature of Oxidizer on the Propellant Burning Rate 12.3.5 Influence of the Plasticizer 12.3.6 Observation of the Combustion “Quality” 12.4 Conclusion References Part III Application of Energetic Materials in Chemical Propulsion 13 Modern Approaches to Formulation Design and Production 13.1 Introduction 13.1.1 Flow Diagram for Formulation Development 13.2 Modeling and Prediction 13.3 Synthesis—Crystallization, Etc. 13.3.1 Constraints on New Materials 13.3.2 Co-crystallization 13.3.3 Novel Approaches 13.3.4 Polymorphism 13.3.5 Crystal Quality 13.3.6 Nanomaterials 13.3.7 Binders 13.3.8 Trace Ingredients 13.4 Characterization and Testing 13.4.1 Chemical Characterization and Testing 13.4.2 Physical Characterization and Testing 13.4.3 Insensitive Munitions 13.5 Environmental Impact 13.5.1 Toxicity [52] 13.5.2 Contamination [53, 54] 13.6 Life Management and Disposal 13.7 Formulation and Processing 13.7.1 Processing Constraints and Approaches 13.7.2 Casting 13.7.3 Extrusion 13.7.4 Pressing 13.7.5 Novel Methods 13.8 Final Remarks References 14 Method of Model Agglomerates and Its Application to Study the Combustion Mechanisms of Al, Al+B, and Ti Particles 14.1 Introduction 14.2 Fundamentals of the Experimental Research of the Evolution of Burning Metal Particles 14.3 Combustion of Al Agglomerates and Al Particles 14.4 Combustion of Al+B Agglomerates 14.5 Combustion of Ti Agglomerates 14.6 Conclusions and Future Plans References 15 Deagglomeration and Encapsulation of Metal and Bimetal Nanoparticles for Energetic Applications 15.1 Synthesis of Bimetallic Nanoparticles and the Study of Their Properties 15.2 Synthesis of Metal Particles of Al/Mg Alloy and the Study of Their Properties 15.3 Development of Aluminum and Bimetallic Nanoparticles with Core–Shell Metal-Binder and Metal-High Energetic Matrix Structures 15.4 Development of Model HEM Containing Active and Passive Binders, Effective Oxidizers, and Metal Nanoparticles 15.4.1 Preparation of Al/HTPB Paste 15.5 Conclusions References 16 Effects of Innovative Insensitive Energetic Materials: 1,1-Diamino-2,2-Dinitroethylene (FOX-7) on the Performance of Solid Rocket Propellants 16.1 Introduction 16.2 Experimental 16.2.1 Raw Materials 16.2.2 Molecular Dynamic Simulations 16.2.3 Formulations 16.2.4 Preparation of Propellants 16.2.5 Equipment and Experimental 16.3 Results and Discussion 16.3.1 Microstructure Physico-Chemical Properties of FOX-7 16.3.2 Compatibility Test 16.3.3 Simulation Results and Discussion 16.3.4 Effect of FOX-7 on the Energetic Properties of Solid Propellant 16.3.5 Effect of FOX-7 on the Combustion Performance of Solid Propellant 16.3.6 Effect of FOX-7 on the Thermal Decomposition of Solid Propellant 16.3.7 Effect of FOX-7 on the Hazardous Properties of Solid Propellant 16.3.8 Effect of FOX-7 on the Mechanical Properties of Solid Propellant 16.4 Conclusions References 17 Simulation of Condensed Products Formation at the Surface of a Metalized Solid Propellant 17.1 Introduction 17.2 Agglomeration of a Metal Fuel 17.2.1 Model of the Propellant Microstructure 17.2.2 Model of Agglomerating Particles Evolution on the Surface of a Burning Propellant 17.2.3 Model of the Agglomerating Particle Separation from the Propellant Surface 17.2.4 Calculation of Agglomerates Characteristics 17.2.5 Interim Summary 17.3 Smoke Oxide Particles Formation 17.3.1 Smoke Oxide Particles Formation During Combustion of Non-agglomerating Metal 17.3.2 Smoke Oxide Particles Formation During Burning of Agglomerate Metal 17.3.3 Synthesis of Smoke Oxide Particles Formation Models 17.3.4 The Model Analysis 17.4 Conclusions References