دسترسی نامحدود
برای کاربرانی که ثبت نام کرده اند
برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید
در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید
برای کاربرانی که ثبت نام کرده اند
درصورت عدم همخوانی توضیحات با کتاب
از ساعت 7 صبح تا 10 شب
ویرایش: 2
نویسندگان: Alessio Pipinato (editor)
سری:
ISBN (شابک) : 0128235500, 9780128235508
ناشر: Butterworth-Heinemann
سال نشر: 2021
تعداد صفحات: 1048
زبان: English
فرمت فایل : PDF (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود)
حجم فایل: 49 مگابایت
در صورت تبدیل فایل کتاب Innovative Bridge Design Handbook: Construction, Rehabilitation and Maintenance به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.
توجه داشته باشید کتاب کتاب راهنمای طراحی پل نوآورانه: ساخت و ساز، بازسازی و نگهداری نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.
راهنمای طراحی پل نوآورانه: ساخت و ساز، بازسازی و نگهداری، ویرایش دوم، ملزومات مهندسی پل را در طراحی، ارزیابی، تحقیق و ساخت گرد هم می آورد. نوشته شده توسط یک گروه بین المللی از کارشناسان، هر فصل به دو بخش تقسیم می شود: اولی مسائل طراحی را پوشش می دهد، در حالی که فصل دوم تحقیقات فعلی را در مورد رویکردهای طراحی نوآورانه مورد استفاده در سراسر جهان ارائه می دهد.
این ویرایش جدید شامل موارد جدید است. موضوعاتی مانند پل های پایی، مصالح جدید در مهندسی پل و برهمکنش سازه خاک و پی. تمام فصل ها به روز شده اند تا شامل آخرین مفاهیم در طراحی، ساخت و نگهداری برای کاهش هزینه پروژه، افزایش ایمنی سازه و به حداکثر رساندن دوام باشند. کد و مراجع استاندارد به روز شده اند.
Innovative Bridge Design Handbook: Construction, Rehabilitation, and Maintenance, Second Edition, brings together the essentials of bridge engineering across design, assessment, research and construction. Written by an international group of experts, each chapter is divided into two parts: the first covers design issues, while the second presents current research into the innovative design approaches used across the world.
This new edition includes new topics such as foot bridges, new materials in bridge engineering and soil-foundation structure interaction. All chapters have been updated to include the latest concepts in design, construction, and maintenance to reduce project cost, increase structural safety, and maximize durability. Code and standard references have been updated.
Front Cover Innovative Bridge Design Handbook: Construction, Rehabilitation and Maintenance Copyright Dedication Contents Authors' biographies Preface Acknowledgment Note Part I: Fundamentals Chapter 1: The history, aesthetic, and design of bridges 1. History of bridge structures 1.1. Pre-Roman era 1.2. Roman era 1.3. Middle ages 1.4. The renaissance 1.5. The period of modernity: 1900 to present 1.6. Recent masterpieces 2. Bridge design and aesthetic 2.1. Bridge design 2.2. Bridge aesthetics 3. Research and innovation in bridge design References Further reading Part II: Loads on bridges Chapter 2: Loads on bridges 1. Introduction 2. Permanent loads 2.1. Self-weight of structural elements 2.2. Self-weight of nonstructural elements 3. Traffic load provisions 3.1. Traffic loads: Eurocode 3.2. Traffic loads: AASHTO 3.3. Traffic loads: AREMA 3.4. Traffic loads: Australian standard 4. Traffic measurement 4.1. Static scales 4.2. Weigh-in-motion systems 5. Analysis of traffic-induced effects 5.1. Truck traffic parameters 5.2. Load effects 5.3. Fatigue 5.4. Overloaded vehicles 6. Environmental effects 6.1. Wind 6.1.1. Eurocode 6.1.2. AASHTO 6.2. Temperature 6.3. Snow 6.4. Earthquakes 7. Dynamic amplification 8. Bridge redundancy 9. Conclusions References Chapter 3: Wind loads 1. Introduction 2. Overview of wind effects on bridges 3. Procedure of wind-resistant design 4. Design wind speeds provided in design codes 5. Wind loads provided in design codes 6. Wind tunnel test and CFD 7. Vortex-induced vibration and its countermeasures 8. Verification of buffeting analysis based on field measurements 9. Wind-induced vibrations of stay cables 10. Research and development in wind loads References Chapter 4: Fatigue and fracture 1. Introduction 2. Structural redundancy and safety 2.1. Structural redundancy 2.2. Principles of structural safety 2.3. Inspection and monitoring 2.3.1. Inspection 2.3.2. Monitoring 3. Codes and standards 3.1. Eurocode 3.2. North American practice 3.3. S-N curve comparison 3.4. Recent code background and pre-standard studies 4. Fatigue and fracture resistance of steel and concrete bridges 4.1. Fatigue 4.2. Fracture 5. Traffic loading and action effects on bridge elements 6. Common failures 7. Crack detection, intervention methods and techniques 7.1. Crack detection 7.2. Local intervention methods 7.2.1. Surface treatment for welded structures 7.2.2. Arresting cracks 7.3. Global interventions 8. Research on fatigue and fracture References Further reading Part III: Structural analysis Chapter 5: Bridge structural theory and modeling 1. Introduction 2. Structural theory 2.1. Equilibrium 2.1.1. Numerical method in structural analysis 2.1.2. Influence lines and surfaces 2.2. Compatibility 2.3. Constitutive laws 2.4. Elastic and plastic behavior 2.4.1. Nonlinear effects Geometric nonlinearity Material nonlinearity Steel Concrete 3. Structural modeling 3.1. Introduction 3.2. Modeling elements 3.2.1. 1-D elements 3.2.2. 2-D elements 3.2.3. 3-D elements 3.2.4. Constraints 3.3. Modeling methods 3.4. Materials and cross sections 3.5. Boundaries 3.6. Modeling strategies 3.7. Modeling approach 3.7.1. Superstructure Spine models Grillage models Isotropic and orthotropic plates Bent model Thermal expansion joints 3.7.2. Substructure modeling 3.8. Modeling by bridge type 3.8.1. RC bridges 3.8.2. Prestressed/post-tensioned concrete bridges 3.8.3. Steel girder bridges 3.8.4. Truss bridges 3.8.5. Arch bridges 3.8.6. Cable-stayed bridges 3.8.7. Suspension bridges 4. Research and development References Chapter 6: Dynamics of bridge structures 1. Linear idealization of bridge structures 1.1. SDOF system 1.2. MDOF system 1.3. IDOF system 2. Bridge response to dynamic loading 2.1. SDOF system 2.1.1. Harmonic loading 2.1.2. Pulse excitation 2.1.3. Earthquake loading 2.2. MDOF system 2.3. IDOF system 3. Influence of supporting soil 3.1. Dynamic properties of the soil-structure system 3.2. Effect of spatially varying ground motion 4. Bridge integrity: Consequences of relative response of adjacent bridge structures 5. Conclusions Acknowledgments References Chapter 7: Risk and reliability in bridges 1. Overview 2. Uncertainty in bridge modeling and assessment 2.1. Probabilistic modeling of uncertain phenomena 2.1.1. Common random variables encountered in structural reliability 2.1.2. Common stochastic processes encountered in structural reliability 2.2. Types of uncertainty 2.2.1. Statistical uncertainty 2.2.2. Parameter uncertainty 2.2.3. Modeling uncertainty 3. Reliability of bridges 3.1. Limit states 3.1.1. Structural limit states and load combinations used in bridges 3.1.2. Element-level limit states 3.1.3. System-level limit states 3.2. Computation of reliability 3.2.1. First-order reliability method 3.2.2. Monte Carlo simulations 3.2.3. System reliability computation 3.3. Specifying target reliabilities for design and assessment 3.3.1. Code-specified target reliabilities 3.3.2. Bridge structures 3.3.3. Loss-based approaches 3.3.4. Fatality-based approaches 4. Reliability-based design codes of bridges 4.1. Partial safety factors 4.2. Calibration of partial safety factors 5. Bridge life cycle cost and optimization 5.1. Time-dependent structural reliability 5.1.1. Descriptors of the time to failure 5.1.2. Capacity and demand both vary nonrandomly in time 5.1.3. Load occurs as a pulsed sequence with random magnitudes Known number of load pulses and no aging Q is a Poisson pulse process and no aging Q is a Poisson pulse process, and structure ages deterministically 5.1.4. Load and capacity both vary randomly in time 5.2. Reliability-based maintenance of bridges 5.2.1. Perfect vs. imperfect repair 5.2.2. Benefit-cost ratio of repair strategies 6. Load and resistance factor design and rating methodologies 7. Summary References Chapter 8: Innovative structural typologies 1. Introduction: Aim and context 2. Literature review 3. 3D bridges force-modeled for one loading condition 4. 3D bridges, optimized for one or more criteria and composed of surface elements 5. Future prospects and conclusions: Role of the designer and the toolbox References Chapter 9: Soil-structure interaction for seismic analysis and design of bridges 1. Introduction 2. Soil-structure interaction (SSI) 2.1. Kinematic interaction 2.2. Inertial interaction 2.3. Soil nonlinearity 2.4. Foundation deformations 3. SSI potential effects 3.1. Beneficial effects of SSI 3.2. Detrimental effects of SSI 4. SSI analysis approaches 4.1. Direct analysis method 4.2. Substructure method 4.3. Free-field site response 4.4. Current design practices 5. Modeling of soil-structure interaction 5.1. Fixed-base model 5.2. Simplified soil-structure interaction model 5.3. Linear lumped-parameter soil model 5.4. Winkler model for shallow foundation soil-structure interaction 5.5. Soil nonlinearity idealization 5.6. Soil-damping idealization 5.7. Winkler model for pile-structure-soil interaction model 5.8. 3-D continuum model 5.9. Soil-structure interaction of integrated abutment 5.10. Spatial variation of earthquake ground motion 6. Conclusions References Part IV: Bridge design based on construction material type Chapter 10: Reinforced and prestressed concrete bridges 1. Types of reinforced concrete bridges 2. Prestressing in bridges 2.1. Principle of prestressing 2.2. Prestressing systems 2.3. Detailing rules 2.4. Losses and time-dependent effects on prestressing forces 2.5. Effective values of prestressing force 2.6. Effects of prestressing 3. Design of reinforced and prestressed concrete bridge decks 3.1. Conceptual design 3.2. Structural modeling and analysis 4. Methods of construction 5. Design example 1 5.1. Basic design data 5.1.1. Geometry 5.1.2. Design codes 5.1.3. Material properties 5.1.4. Actions Permanent actions Variable actions 5.1.5. Combination of actions Partial and combination factors Combination of traffic loads with other actions 5.2. Calculation of internal forces 5.2.1. Influence line in transverse direction 5.2.2. Bending moments 5.2.3. Shear forces 5.3. Ultimate limit states 5.3.1. Effective width of flange 5.3.2. Design for flexure 5.3.3. Design for shear 5.4. Serviceability limit states 5.4.1. Crack control 5.4.2. Deflection control 6. Design example 2 6.1. Basic data 6.1.1. Geometry 6.1.2. Design codes 6.1.3. Material properties 6.1.4. Actions 6.2. Preliminary design 6.2.1. Calculation of bending moments at midspan 6.2.2. Design for ULS (bending) at midspan 6.2.3. Design for SLS (decompression) at midspan 6.2.4. Applied reinforcement and cable layout 6.2.5. Cable layout 6.3. Detailed design 6.3.1. Cross-sectional data 6.3.2. Losses of prestress, effective prestress 6.3.3. Analysis (calculation of internal forces) 6.3.4. ULS verifications 6.3.5. SLS verifications 7. Research and development 7.1. Shell pedestrian bridge in Madrid 7.2. Large-span arch bridge, Colorado, USA 7.3. Lightweight concrete for bridges, Stolma Bridge, Norway 7.4. UHPC bridge, Sherbrooke 7.5. Seonyugyo Bridge, Seoul, South Korea 7.6. MuCEM footbridge, Marseille, France 7.7. Tomai Expressway, Shizuoka, Japan 7.8. Butterfly Web bridge, Terasako Choucho Bridge, Japan 7.9. Research and development outlook 8. Conclusions Acknowledgments References Further reading Chapter 11: Steel and composite bridges 1. Introduction 2. Design 2.1. Steel bridges 2.2. Composite bridges 2.2.1. General 2.2.2. Typical structures 2.2.3. Composite cable-stayed bridges 2.2.4. Erection 3. Product specifications 3.1. Codes 3.2. Stress-strain behavior 3.3. Hardness 3.4. Ductility 3.5. Fracture toughness 3.6. Fatigue resistance 3.7. Strength property variability 3.8. Residual stresses 3.9. Durability 3.10. Robustness and structural integrity 4. Structural connections 4.1. Bolted connections 4.2. Riveted connections 4.3. Welded connections 4.4. Connection choice 5. Steel bridge analysis 5.1. Structural modeling 5.2. Verification for static loading in ULS 5.3. Verification for earthquake loading 5.4. Verification of SLS 5.5. Verification associated with durability 6. Composite bridge analysis 6.1. Introduction 6.2. Structural modeling 6.3. Verification for static loading in ULS 6.4. Verification for earthquake loading 6.5. Verification of SLS 6.6. Verification associated with durability 7. Truss bridges analysis 7.1. Truss typologies 7.2. Analysis methods 8. Research and Development References Further reading Chapter 12: Timber bridges 1. Wood used in bridges 1.1. Introduction 2. Wood as structural material 2.1. Structure of wood 2.2. Mechanical properties of wood 3. Design of timber components 3.1. Loads on timber bridges 3.2. Design values 3.3. Design strength for structural timber members 3.3.1. Bending and axial actions 3.3.2. Shear action 3.3.3. Local effects 3.3.4. Curved and tapered members 3.4. Structural modeling 4. Design of connections 4.1. Connectors 4.2. Dowel-type connections 4.3. Design expressions for dowel-type connections with multiple slotted-in plates 5. Design of modern timber bridges 5.1. Building elements 5.1.1. Glulam 5.1.2. Stress-laminated decks 5.1.3. Other materials 5.2. Structural systems 5.2.1. Beams and slabs 5.2.2. Trusses 5.2.3. Arches 6. Design verifications of timber bridges 6.1. Structural information 6.2. Verification of arch in ULS 6.3. Verification of a dowel connection in ULS 6.3.1. Transfer of forces from steel plates to wood 6.3.2. Splitting along dowel rows caused by force parallel to grain 6.3.3. Splitting along grain caused by tensile force Normal to grain 7. Verification of fatigue resistance (ULS) 8. Design and durability References Further reading Chapter 13: Masonry bridges 1. Structural theory of masonry structures 1.1. History of masonry structures 1.2. Theory of masonry structures 1.3. History and technology of masonry arches 2. Assessment of the load-carrying capacity of arch masonry bridges 2.1. Historical methods 2.2. Recent methods 2.3. Empirical rules 2.4. Classic solution 2.5. FEM analysis 3. Analysis, repair, and strengthening 3.1. Material modeling 3.2. Structural modeling 3.3. Damage classification in masonry bridges 3.4. Common damages in masonry arch bridges 3.4.1. Scour of foundations 3.4.2. Arch ring issues 3.5. Structural intervention techniques for masonry arch bridges 3.5.1. Identification of defects 3.5.2. Structural intervention Pressure pointing and grouting Tie bars Rebuilding spandrel/wing walls Saddling Concrete slabs Underpinning Partial reconstruction Repointing of mortar Repair of spalling Repair of missing masonry units Repair of slipped masonry units Repair of cracked masonry units Arch deformation repair Maintenance 4. Structural assessment and retrofit 4.1. Structural assessment: Case study 4.2. Structural intervention: Case study References Part V: Bridge design based on geometry Chapter 14: Arch bridges 1. Introduction 2. Historical trends 3. Types 4. Selected structures 5. Construction methods 6. Technical innovations and research on arch bridges References Chapter 15: Girders 1. Introduction 2. Planning 2.1. Project need identification 2.2. Data collection and preliminary design 2.3. Funding procurement 2.4. Project development, delivery, and execution 3. Preliminary bridge design 3.1. Site constraints 3.2. Function 3.3. Span length 3.4. Substructure 3.5. Seismic considerations 3.6. Material selection 3.7. Aesthetics of girder bridges 3.8. Environmental considerations 3.9. Schedule 3.10. Cost 4. Final design 4.1. Design criteria 4.2. Material properties 4.3. Loading type 4.4. Utilities 4.5. Design considerations 4.6. Detailing practices 4.7. Construction specifications 4.8. Construction cost estimates and schedule 5. Construction 6. Preservation 6.1. Provide arms-reach inspection access 6.2. Design for rope-assisted inspection 6.3. Design to account for maintenance 6.4. Consider the life cycle cost of bridge 7. Innovation 7.1. Predominance of APD procurement 7.2. High-performance materials 7.3. Use of structural composites 7.4. Automatic bridge health monitoring 7.5. Improved girder fabrication and shipping lengths 7.6. Longer Jointless bridges 7.7. Better girder erection procedures 7.8. Highly efficient girder shapes 7.9. Hybrid girders 7.10. Improved design codes 8. Conclusions References Chapter 16: Long-span bridges 1. Introduction 1.1. Concepts and problems of long-span bridges 1.2. Historical evolution of long-span bridges 1.2.1. Suspension bridge 1.2.2. Cable stayed bridges 2. Cable-stayed bridges 2.1. Structural principles and concepts 2.1.1. Suspension system 2.1.2. Deck slenderness 2.2. Structural systems 2.2.1. Earth-anchored 2.2.2. Self-anchored 2.3. Cable configuration 2.4. Structural elements 2.4.1. Decks 2.4.2. Towers 2.4.3. Stay cables 2.5. Analysis and design 2.6. Construction methods 3. Suspension bridges 3.1. Static principles and structural form 3.1.1. Self-anchored versus earth-anchored 3.1.2. Cable layout 3.1.3. Deck 3.1.4. Pylons and anchor blocks 3.2. Analysis: Special aspects 3.2.1. Analysis for vertical loads Geometry and forces for permanent loads Geometry and loads for moving loads Predimensioning 3.2.2. Analysis for horizontal loads 3.3. Methods of construction 3.4. Technology of main cables and hangers 3.5. Aerodynamic stability 3.5.1. Deformable structures Von karman vortex Torsional-flexural flutter 4. Limits of long-span bridges 5. Future perspective 5.1. Development of long-span bridges 5.1.1. Materials 5.1.2. Construction and structural systems 5.2. Ultra-long-span bridges 5.2.1. Limit spans 5.2.2. Challenges 5.2.3. Sustainability 5.3. Concluding remarks References Part VI: Special topics Chapter 17: Integral bridges 1. Introduction 2. Historical background 3. Modern integral bridges 4. Thermal effects in integral bridges 4.1. Thermal effects in integral bridge piles 4.2. Thermal effects in integral bridge abutments 5. Conditions and recommendations for integral bridge construction 5.1. Length of the bridge 5.1.1. Integral bridge length limits as governed by low-cycle fatigue performance of the piles 5.1.2. Integral bridge length limits as governed by flexural strength of abutments 5.2. Superstructure type 5.3. Geometry of the bridge 5.4. Abutments and wing walls 5.5. Multiple-span integral bridges 5.6. Foundatıon soil conditions 6. Construction methods of integral bridges 7. Design of integral bridges 7.1. Construction stages, loads, and load combinations 7.2. Modeling integral bridges for analysis under gravitational loads 7.3. Thermal variations and associated soil-bridge interaction 7.4. Live load distribution in integral bridges 7.5. Design for seismic loads 8. Nonlinear modeling of integral bridges for seismic performance assessment 8.1. Description of the integral bridge to introduce modeling procedure for seismic performance assessment 8.2. Modeling of superstructure 8.3. Modeling of the bearings 8.4. Modeling of the pier, reinforced concrete piles, abutments, and steel H-piles 8.5. General Information on the modeling of soil-structure interaction 8.6. Modeling of local abutment-backfill interaction 8.7. Modeling of local soil-pile interaction 8.8. Modeling of free-field effects by soil column model 9. Important considerations in integral bridge design 9.1. Superstructure 9.2. Abutments, wing walls, and approach slab 9.3. Piles at abutments 9.4. Bearings, piers, and foundations 10. Conclusions and closing remarks References Chapter 18: Movable bridges 1. Introduction 1.1. General 1.2. Short description of movable bridge types 1.2.1. Lift bridges 1.2.2. Swing bridges 1.2.3. Bascule bridges 1.2.4. Balance beam bridges (draw bridges) 2. Lift and lower bridges 2.1. Example of a lift bridge: The Guaiba River bridge with concrete towers at Porto Alegre, Brazil (1954-1960) 2.1.1. General information 2.1.2. The lift bridge General information Bridge deck Towers and piers Mechanical installations 2.2. Lower (submergible) bridges 3. Swing bridges 3.1. The Prestressed concrete bridge across the Shatt-Al-Arab, Iraq (1972-1978) 3.1.1. General 3.1.2. The swing bridge Bridge deck Main pier 3.1.3. Joint to the fixed part 3.2. Cable-stayed bridge in the port of Barcelona, Spain 3.2.1. Introduction 3.2.2. Description of the design Main structural system Bridge deck Tower and pier Mechanical equipment 3.2.3. Construction 3.3. Railroad bridge across the Sungai Perai River, Malaysia (2008-2013) 3.3.1. Introduction 3.3.2. Description of the design 4. Bascule bridge: The new Galata bridge with twin double flaps at Istanbul, Turkey (1985-1993) 4.1. Introduction 4.2. Design 4.2.1. Bascule bridge 4.2.2. Approach bridges Structural design Bearings 4.2.3. Piles 4.3. Special aspects of dimensioning 4.3.1. Ship impact 4.3.2. Earthquake analysis Response-Spectrum analysis Time-history analysis Acceleration diagrams Investigated systems Results 5. Double balanced beam bridge (DBBB)-Design proposal 5.1. Design concept 5.2. Comparison of section forces 5.2.1. System and loads 5.2.2. DBBB 5.2.3. Double bascule bridge 5.2.4. Comparison of DBBB and the double bascule bridge 5.2.5. Comparison of DBBB with the single bascule beam bridge 5.3. Summary References Chapter 19: Highway bridges 1. Introduction 2. Practical considerations for selection of a highway bridge type 2.1. Selecting a bridge type 2.1.1. Geometric demands of the roadway 2.1.2. Utilization requirements 2.1.3. Surface site conditions 2.1.4. Subsurface site conditions 2.1.5. Construction considerations 2.1.6. Project delivery system 2.1.7. Regulatory requirements 2.1.8. Aesthetics 3. Bridge types 3.1. Short-span bridges 3.1.1. Culverts 3.1.2. Slab-span bridges 3.1.3. T-beam 3.1.4. Wooden beams 3.1.5. Precast concrete box beams 3.1.6. Precast concrete I-beams 3.1.7. Noncomposite rolled steel I-beams 3.2. Medium-span bridges 3.2.1. Precast Prestressed concrete beams (box beams and I-beams) 3.2.2. Composite rolled I-beams 3.2.3. Composite steel plate girders 3.2.4. Reinforced cast-in-place concrete box girder 3.2.5. Post-tensioned, cast-in-place concrete box girder 3.2.6. Composite steel box girder 3.3. Long-span bridges 3.3.1. Composite steel plate girder bridge 3.3.2. Post-tensioned, cast-in-place concrete box-girder bridge 3.3.3. Post-tensioned, concrete segmental bridges 3.3.4. Steel and concrete arches 3.3.5. Steel trusses 3.4. Very long-span bridges 3.4.1. Suspension bridges 3.4.2. Cable-stayed bridges 4. Methods of analysis (emphasizing highway structures) 5. Design method 6. Design example 6.1. Selecting the bridge type 6.2. The structural concept 6.3. Design parameters 6.3.1. Dead loads 6.3.2. Live loads 6.3.3. Temperature range/humidity 6.3.4. Wind conditions 6.3.5. Exposure class 6.3.6. Subsurface conditions 6.3.7. Seismic data 6.3.8. Other considerations 6.3.9. Materials Structural steel Concrete Reinforcing steel Shear connectors 6.4. Details on structural steel and slab reinforcement 6.4.1. Resulting Main steel girder configuration 6.4.2. Resulting slab reinforcement 6.4.3. Construction process Launching of the steel girder Slab concreting 7. Research needs for highway bridges 7.1. The need to optimize structural systems 7.2. Develop ways to extend service life 7.3. Develop systems to monitor bridge performance 7.4. Develop details and methods to accelerate bridge construction 7.5. Develop a full life cycle approach to bridge data management References Chapter 20: Railway bridges 1. Introduction 2. Type classifications 2.1. Bridge layout 2.2. Materials and code references 2.3. Substructures and foundations 2.4. Superstructures 3. Analysis and design 3.1. Loads and load combinations 3.1.1. Dead loads 3.1.2. Live loads 3.1.3. Dynamic effects 3.1.4. Horizontal forces 3.1.5. Aerodynamic actions from passing trains 3.1.6. Derailment and other actions for railway bridges 3.2. Verifications regarding deformations and vibrations for railway bridges 3.3. Fatigue strength 4. Static scheme and construction details 4.1. Static scheme 4.2. Expansion joints 4.3. Ballasting 4.4. Rainwater evacuation 4.5. Fatigue details 4.6. Accessibility 4.7. Construction process 5. RandD on railway bridges References Further reading Chapter 21: Footbridges 1. Introduction 2. Conceptual design 3. Construction 4. Footbridge types 4.1. Type selection 4.2. Truss and girders 4.3. Arches 4.4. Cable-stayed and suspension footbridges 4.5. Spatial structures 5. Codes, standards, and literature References Part VII: Bridge components Chapter 22: Seismic component devices 1. Introduction 2. Seismic protective devices 2.1. Seismic isolators 2.1.1. Theoretical concept of seismic isolation in bridges 2.1.2. Types of seismic isolators 2.1.2.1. Elastomeric-based isolators 2.1.2.2. Sliding-based isolators 2.1.3. Standard design method for isolation bearings 2.1.4. Dampers 2.1.4.1. Fluid viscous damper 2.1.4.2. Friction damper 2.1.4.3. MR dampers 3. Applications of seismic protective systems in bridges 4. Conclusions References Chapter 23: Cables 1. Introduction 2. Cable components 2.1. Tension members 2.2. Corrosion protective systems 2.3. Anchorages 2.4. Fire protective systems 2.5. Vibration mitigation devices 2.6. Recent developments 2.7. Major realizations 3. Analysis and design 3.1. Loads and basis of design 3.2. Structural analysis 3.2.1. Static behavior 3.2.2. Dynamic behavior 3.2.3. Numerical modeling 3.3. Cable vibrations and damping 3.3.1. Cable damping 3.3.2. Buffeting 3.3.3. Vortex shedding/lock-in 3.3.4. Galloping 3.3.5. Aerodynamic interference 3.3.6. Rain-wind-induced vibration 3.3.7. Dry galloping 3.3.8. Ice galloping 3.3.9. Parametric excitation 3.3.10. Design of vibration mitigation devices 4. Present challenges and future improvements References Further reading Chapter 24: Orthotropic steel decks 1. Introduction 2. History 3. OSD concept 4. Practical design 4.1. Fatigue design 4.2. OSD design based on AASHTO 4.3. Eurocode design principles 4.4. Open or closed stiffeners 5. Innovative applications and research topics 5.1. Fracture mechanics and residual stresses 5.2. Refurbishment techniques 5.3. Innovative concepts 6. Conclusions References Chapter 25: Bridge foundations 1. Introduction 2. Determination of the geologic setting 3. Geotechnical investigation report 4. Foundation selection during the type selection (TSL) project phase 5. Geotechnical design report 6. Foundation design 6.1. Driven pile foundations 6.1.1. Steel H-piles 6.1.2. Steel pipe piles 6.1.3. Concrete piles 6.1.4. Integrity testing of driven piles 6.1.5. Load testing of driven piles 6.1.6. Design methodology for driven piles 6.2. Drilled foundations 6.2.1. Integrity testing of drilled shafts 6.2.2. Load testing of drilled shafts 6.2.3. Design methodology for drilled shafts 6.3. Foundations on rock 7. Foundation construction 8. Special considerations 8.1. Liquefaction 8.2. Lateral pile loads 8.3. Downdrag and drag force on driven and drilled foundations 8.4. Vessel collision 8.5. Coastal storms 8.6. Scour 8.7. Karst conditions 9. Foundation design standards and codes References Further reading Chapter 26: Expansion joints and structural bearings 1. Introduction 2. Expansion joints 2.1. Overview 2.2. Design criteria 2.3. Codes and standard 2.4. Working life 2.5. Jointless structures 3. Bearings 3.1. Overview 3.1.1. Structural bearings 3.1.2. Seismic devices 3.2. Design criteria 3.3. Codes and standards 3.4. Working life 4. Case study: Rion-Antirion bridge 4.1. Introduction 4.2. Main bridge seismic protection system 4.3. Viscous damper full-scale testing 4.3.1. Qualification tests on prototype 4.4. Production quality control tests on main bridge dampers 4.5. Fuse restraints testing program 4.6. The behavior of the bridge during the Earthquake of Achaia-Ilia References Part VIII: Bridge construction Chapter 27: Case study: The San Giorgio Bridge 1. Introduction 2. The historical bridge collapse 3. Dismantling operation 4. The new bridge 4.1. Generalities 4.2. Deck system 4.3. Elevation design 4.4. Foundations 4.5. Structural devices 4.6. Structural monitoring system 4.7. Special equipment 4.8. Construction material details References Chapter 28: Case study: The Russky Bridge 1. Introduction 2. Design 2.1. Bridge tower 2.2. Bridge deck 2.3. Cable-stay system 2.4. Seismic devices 2.5. Production facilities 3. Construction phase 3.1. Bridge foundations 3.2. Bridge tower and girder 3.3. Preassembly of the deck panels 3.4. Panel lifting 3.5. Installation of the longest stay cables 3.6. Key deck segment erection 4. Monitoring system References Chapter 29: Case study: The Akashi Kaikyo bridge 1. Introduction 2. Design 2.1. Bridge tower 2.2. Bridge deck 2.3. Cable-stay system 2.4. Seismic devices 3. Innovations and special construction details 3.1. Innovative technologies 3.2. Bridge foundations 3.3. Installation of cables 4. Monitoring system 5. Maintenance system References Chapter 30: Bridge construction equipment 1. Introduction 2. Balanced cantilever erection with launching gantry 3. Span-by-span erection with launching gantry 4. Balanced cantilever erection with lifting frames 5. Balanced cantilever erection with cranes 6. Precast beam method 7. Full-span precast method 8. Span-by-span erection on falsework 9. Incremental launching method 10. Form traveler method 11. Automatic climbing formwork systems 12. Heavy lifting References Part IX: Assessment, monitoring, and retrofit of bridges Chapter 31: Bridge diagnostics, assessment, retrofit, and management 1. Introduction 2. Materials decay and on-site testing 2.1. Degradation causes 2.2. Concrete structures 2.2.1. Affecting factors 2.2.2. Temperature 2.2.3. Sulfate 2.2.4. Alkali-silica reaction 2.2.5. Corrosion process 2.2.6. Chloride penetration 2.2.7. Carbonation 2.3. Metal structures 2.3.1. Corrosion process 2.3.2. Fatigue phenomena 2.4. Earthquakes 3. Investigation procedures 3.1. Bridge inspection 3.2. On-site tests for concrete structures 3.3. On-site tests for metal structures 3.3.1. Magnetic particle inspection 3.3.2. Liquid penetration inspection 3.3.3. Radiographic evaluation 3.3.4. Ultrasonic inspection 3.3.5. Eddy current inspection 3.3.6. Acoustic emission techniques 4. Assessment procedures 4.1. Introduction 4.2. First level: Preliminary evaluation 4.3. Second level: Detailed investigation 4.4. Third level: Expert investigation 4.5. Fourth level: Advanced testing 4.6. Critical member identification procedure 5. Repair and strengthening 5.1. General information 5.2. Lightweight components 5.3. Composite actions 5.4. Improving bridge member strength 5.5. Post-tensioning applications 5.6. Modification of the structural configuration 5.7. Concrete Bridges 5.7.1. Crack repair 5.7.2. Stitching 5.7.3. Reinforcement 5.7.4. Overlays and surface treatment 5.7.5. Flexible sealant 5.7.6. Patch repairs 5.8. Steel Bridges 5.8.1. Stop-hole drilling 5.8.2. Weld-toe grinding 5.8.3. Peening 5.8.4. Gas tungsten arc Remelting 5.8.5. Rivet replacement 5.8.6. Welding 5.8.7. FRP strengthening 5.8.8. Cover plating 5.8.9. Painting 6. Bridge management 6.1. Overview on BMSs 6.2. Network and bridge level 6.3. Network level and prioritization methods 6.4. Project level 6.5. Network- and project-level decision making 6.6. Economic approaches for bridge network management: Repair or replace 7. Case study 7.1. The Macdonald Bridge, Halifax, NS 7.2. The Luiz I Bridge, Porto, PT 7.3. The Broadway Bridge, Portland, OR 8. Research on bridge assessment, retrofit, and management References Chapter 32: Bridge monitoring 1. Introduction 2. Objectives of SHM deployments 3. Interpreting monitoring data 4. SHM technologies 4.1. Prevalence of different SHM technologies 4.2. Discrete sensors 4.2.1. Strain gauges Case study: Exe north bridge load testing (Huseynov et al., 2017) 4.2.2. Scour monitoring 4.2.3. Vibration/acceleration monitoring (Kariyawasam, 2020) Case study: Vibration-based monitoring at Baildon Bridge (Kariyawasam, 2020) 4.2.4. Inclination and displacement monitoring Case study: Mineral line bridge field testing (Faulkner et al., 2018) 4.2.5. MEMS sensors 4.3. Distributed sensors 4.3.1. Computer vision Case study: Abutment Wall crack movement monitoring using computer vision (Huseynov et al., 2019) 4.3.2. Acoustic emission (AE) Case study: Hammersmith flyover (Webb et al., 2014) 4.3.3. Fiber optic strain sensing Case study: Nine Wells Bridge (Webb et al., 2017) 4.3.4. Weigh-in-motion (WIM) systems 4.3.5. Corrosion detection systems 4.4. Earth observation 4.5. Further information on measurement techniques used for bridge monitoring 5. Deployment and operation 5.1. Sensor deployment strategies 5.1.1. Wired sensor networks 5.1.2. Wireless sensor networks 5.2. Deployment challenges 5.3. Data quality 5.3.1. Reliability and robustness 5.3.2. Accuracy and resolution 5.4. Sensor calibration 5.5. Future proofing 5.6. Data processing 5.6.1. Data size and duality 5.6.2. Use of cloud services 5.6.3. Model-based versus model-free analysis Model-based systems Model-free systems 6. Summary 6.1. Future industry directions 6.2. Future research directions Acknowledgments References Chapter 33: Application of fiber-reinforced polymers to reinforced concrete bridges 1. Introduction 2. Jacket materials and processes 3. Advantages of fiber-reinforced polymer systems (FRPS) 4. Performance-Columns 4.1. Laboratory tests-Seismic retrofit 4.2. Laboratory tests-Seismic repair 4.3. Laboratory tests-New construction 5. Performance-Superstructure 5.1. Laboratory experiments-CSS for short- and medium-span bridges 5.2. Laboratory experiments-FRP for rapid rehabilitation 6. Design guides and codes 6.1. Bridge strengthening and repair with FRP 6.2. FRP tubes as stay-in-place formwork 6.3. Design of FRP bridge decks 7. Other loading applications 8. Conclusions References Chapter 34: Bridge collapse 1. Introduction 2. Construction failures 3. In-service failures 3.1. Design flaws 3.2. Material inadequacy 3.3. Overloading 3.4. Maintenance 4. Extreme events 5. Concluding remarks References Index Back Cover