دسترسی نامحدود
برای کاربرانی که ثبت نام کرده اند
برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید
در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید
برای کاربرانی که ثبت نام کرده اند
درصورت عدم همخوانی توضیحات با کتاب
از ساعت 7 صبح تا 10 شب
ویرایش: [1 ed.]
نویسندگان: Marco Garcia-Vaquero (editor). Gaurav Rajauria (editor)
سری:
ISBN (شابک) : 0128200960, 9780128200964
ناشر: Academic Press
سال نشر: 2021
تعداد صفحات: 554
[556]
زبان: English
فرمت فایل : PDF (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود)
حجم فایل: 29 Mb
در صورت تبدیل فایل کتاب Innovative and Emerging Technologies in the Bio-marine Food Sector: Applications, Regulations, and Prospects به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.
توجه داشته باشید کتاب فن آوری های نوآورانه و نوظهور در بخش مواد غذایی زیست دریایی: کاربردها، مقررات و چشم اندازها نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.
فناوریهای نوآورانه و نوظهور در بخش مواد غذایی زیست دریایی: کاربردها، مقررات و چشماندازها استفاده از فناوریها و پیشرفتهای اخیر در صنایع غذایی دریایی در حال ظهور را ارائه میدهد. این کتاب که توسط دانشمندان مشهور در این زمینه نوشته شده است، در درجه اول بر اصول کاربرد و پیشرفتهای تکنولوژیکی اصلی به دست آمده در سالهای اخیر تمرکز دارد. این شامل طراحی تکنولوژیکی، تجهیزات و کاربردهای این فناوری ها در فرآیندهای متعدد است. استخراج، نگهداری، میکروبیولوژی و فرآوری مواد غذایی به طور گسترده در زمینه گسترده محصولات غذایی دریایی، از جمله ماهی، سخت پوستان، ضایعات فرآوری غذاهای دریایی، جلبک دریایی، ریزجلبک ها و سایر محصولات جانبی مشتق شده تحت پوشش قرار می گیرد.
این یک محصول فرعی است. منبع بین رشتهای که پتانسیل فناوری را برای اهداف متعدد در صنایع غذایی دریایی برجسته میکند، زیرا این رویکردهای فنآوری جایگزین آینده برای توسعه فرآیندهای صنعتی کارآمدتر است. محققان و دانشمندان در زمینههای میکروبیولوژی مواد غذایی، شیمی مواد غذایی، توسعه محصول جدید، پردازش مواد غذایی، فناوری مواد غذایی، مهندسین فرآیندهای زیستی در صنایع دریایی و دانشمندان در حوزههای مرتبط با دریا، همگی این را منبع جدیدی خواهند یافت.
Innovative and Emerging Technologies in the Bio-marine Food Sector: Applications, Regulations, and Prospects presents the use of technologies and recent advances in the emerging marine food industry. Written by renowned scientists in the field, the book focuses primarily on the principles of application and the main technological developments achieved in recent years. It includes technological design, equipment and applications of these technologies in multiple processes. Extraction, preservation, microbiology and processing of food are extensively covered in the wide context of marine food products, including fish, crustaceans, seafood processing waste, seaweed, microalgae and other derived by-products.
This is an interdisciplinary resource that highlights the potential of technology for multiple purposes in the marine food industry as these technological approaches represent a future alternative to develop more efficient industrial processes. Researchers and scientists in the areas of food microbiology, food chemistry, new product development, food processing, food technology, bio-process engineers in marine based industries and scientists in marine related areas will all find this a novel resource.
Front Cover Innovative and Emerging Technologies in the Bio-marine Food Sector: Applications, Regulations, and Prospects Copyright Contents Contributors Chapter 1: Overview of the application of innovative and emerging technologies in the bio-marine food sector 1.1. Introduction 1.2. Marine resources 1.3. Emerging technologies 1.4. Book objectives 1.5. Book structure References Chapter 2: Regulations on the use of emerging technologies and bio-marine food products 2.1. Introduction 2.2. Principles of food regulation 2.2.1. International organizations 2.2.2. European Union 2.2.3. Risk assessment, risk management, and risk communication 2.3. Food safety systems 2.3.1. European Union 2.3.1.1. Food safety regulation 2.3.1.2. Novel food regulation Regulation (EC) 2015/2283 Novel foods in the bio-marine sector 2.3.2. United States 2.3.3. Canada 2.3.4. Latin America 2.3.5. Australia and New Zealand 2.3.6. Africa References Chapter 3: Equipment and recent advances in ultrasound technology 3.1. Introduction 3.2. Ultrasound principles 3.3. Applications of ultrasounds in food processes 3.3.1. Freezing and thawing processes 3.3.2. Extraction of multiple bioactive compounds 3.3.3. Filtration processes 3.3.4. Dehydration and drying processes 3.3.5. Enzymatic and microbial inactivation processes 3.3.6. Emulsification processes 3.4. Current advances in ultrasound equipment 3.5. Ultrasound to improve conventional methods in the bio-marine sector 3.6. Use of ultrasound combined with other innovative technologies 3.7. Future trends of sonication and limitations of the technology Acknowledgments References Chapter 4: Ultrasound-assisted extraction of proteins and carbohydrates 4.1. Introduction 4.2. Marine sources of proteins and carbohydrates 4.3. Ultrasound mechanism of action 4.4. Principles of ultrasound-assisted extraction 4.5. Ultrasonic extraction of proteins 4.5.1. Algae (Macroalgae and Microalgae) 4.5.2. Fish and shellfish 4.6. Ultrasound-assisted extraction of carbohydrates 4.7. Applications of protein and carbohydrate compounds References Chapter 5: Ultrasound-assisted extraction of lipids, carotenoids, and other compounds from marine resources 5.1. Introduction 5.2. Mechanism of ultrasound-assisted extraction 5.3. Parameters affecting ultrasound-assisted extraction 5.3.1. Sonication time 5.3.2. Ultrasound frequency 5.3.3. Temperature 5.3.4. Ultrasonic power 5.3.5. Effect of extractant/solvent type 5.3.6. Effect of solid to solvent ratio 5.3.7. Modes of sonication 5.4. Marine resources 5.4.1. Algae 5.4.2. Marine micro-organisms, vertebrates, invertebrates, and their wastes 5.5. Ultrasound-assisted extraction of different bioactive from various marine sources 5.5.1. Lipids 5.5.1.1. Ultrasonic assisted extraction of lipid from microalgae 5.5.1.2. Ultrasonic assisted extraction of lipid from fishes, invertebrates and their byproducts 5.5.1.3. Ultrasonic assisted extraction of lipid from marine yeast 5.5.2. Carotenoids 5.5.2.1. Ultrasonic assisted extraction of carotenoids from microalgae and macroalgae 5.5.2.2. Ultrasonic assisted extraction of carotenoids from invertebrates and fungi 5.5.3. Other pigments 5.5.3.1. Ultrasonic assisted extraction of pigments from microalgae 5.5.4. Phenolic compounds 5.5.4.1. Ultrasonic assisted extraction of phenolic compounds from microalgae 5.5.4.2. Ultrasonic assisted extraction of phenolic compounds from macroalgae 5.5.4.3. Ultrasonic assisted extraction of phenolic compounds from fish and fish wastes 5.6. Marine-derived compounds and prospects 5.7. Industrial applications of marine origin compounds 5.7.1. Pharmaceutical industries 5.7.2. Food and nutraceutical industries 5.7.3. Cosmetic industries 5.8. Ultrasonic devices 5.8.1. Ultrasonic bath 5.8.2. Ultrasonic probe 5.8.3. Commercial ultrasonic devices 5.9. Ultrasound-assisted extraction: Industrial prospects 5.9.1. Sustainable approach, scale-up and cost 5.10. Summary References Chapter 6: Other ultrasound-assisted processes 6.1. Introduction 6.2. Ultrasound-assisted decontamination and preservation 6.3. Ultrasound-assisted heat and mass transfer processes 6.3.1. Freezing 6.3.2. Thawing 6.3.3. Dehydration and drying 6.4. Other applications 6.5. Conclusions References Chapter 7: Equipment and recent advances in pulsed electric fields 7.1. Introduction 7.2. PEF processing 7.2.1. Historical background 7.2.2. PEF equipment and mechanisms 7.2.3. Assessment of the extent of electroporation 7.2.4. Stages and purpose of the PEF treatment 7.3. Recent advances in the application of PEF in the bio-marine food sector 7.3.1. Application to fish 7.3.2. Application to caviar and fish roe products 7.3.3. Application to microalgae and seaweed 7.3.3.1. Macroalgae (seaweed) 7.3.3.2. Microalgae 7.3.4. Application to crustaceans 7.3.5. Application to mollusks 7.3.6. By-product valorization 7.4. Industrial PEF equipment 7.5. Advantages and limitations of PEF 7.6. Future trends 7.7. Summary Acknowledgments References Chapter 8: Pulsed electric fields for the extraction of proteins and carbohydrates from marine resources 8.1. Introduction 8.2. Marine bioresources 8.2.1. Microalgae 8.2.2. Macroalgae 8.3. Electric field extraction 8.3.1. Pulsed electric fields 8.3.2. POH and moderate electric fields 8.4. PEF extraction of marine bioresources 8.4.1. Proteins 8.4.2. Carbohydrates 8.5. Future prospects and conclusions References Chapter 9: Pulsed electric fields for the extraction of lipids, pigments, and polyphenols from cultured microalgae 9.1. Introduction 9.2. Pulsed electric fields for the extraction of lipids 9.3. Pigments: Chlorophylls and carotenoids 9.3.1. Chlorophylls 9.3.2. Carotenoids 9.4. Polyphenols and other valuable compounds 9.5. Towards industrial products derived from marine microorganisms 9.5.1. Utilization of microalgae-derived lipids and pigments in foods 9.5.2. Other marine organisms 9.6. Conclusions Acknowledgments Conflict of interests References Chapter 10: Other pulse-assisted processes for the bio-marine food sector 10.1. Introduction 10.2. Mechanism of microbial inactivation 10.3. Application of PEF for seafood preservation and improved quality of fish and fish products 10.3.1. PEF to enhanced drying, brining, and marinating 10.4. Application of PEF for by-products valorization 10.5. Advantage, disadvantage, and market challenges of PEF 10.6. Conclusions References Chapter 11: Equipment and recent advances in supercritical fluids extraction 11.1. Introduction 11.2. Supercritical fluid extraction of functional ingredients from marine species 11.2.1. Carotenoids 11.2.2. Bio-oils and other lipids 11.2.3. Saccharides 11.2.4. Proteins 11.3. Conclusions 11.4. Summary points References Chapter 12: Extraction of carbohydrates and proteins from algal resources using supercritical and subcritical fluids for&sp 12.1. Introduction 12.2. Extraction of biomolecules through different fluid extraction methods 12.2.1. Supercritical and subcritical fluid extraction of biomolecules 12.2.2. Use of co-solvents with SCCO2 for extraction of carbohydrates 12.2.3. Carbohydrate extraction from algae using a subcritical solvent extraction 12.2.4. The combined use of SCCO2 and SWE for the extraction of sugar and protein 12.2.5. Protein, peptides, and amino acid extraction by SFE and SWE method 12.3. Improvement of extraction yield 12.3.1. Extraction yield improvement for carbohydrates and protein 12.3.2. Extraction of bioactive molecules 12.4. Current patents on supercritical/subcritical fluid extraction processes for carbohydrate and protein extraction fro ... 12.5. Conclusion and future prospect Acknowledgement References Chapter 13: Supercritical fluid extraction of lipids, carotenoids, and other compounds from marine sources 13.1. Introduction 13.2. Supercritical fluid extraction of high-value compounds from marine sources 13.2.1. Factors and parameters affecting the SFE process 13.2.1.1. Role of raw material 13.2.1.2. Role of temperature and pressure on solubility 13.2.1.3. Role of co-solvent 13.2.1.4. Role of solvent-to-feed ratio 13.2.1.5. Role of extraction time and kinetics curves 13.3. Recent applications of SFE for high value compounds from marine resources: Microalgae, macroalgae, fisheries produc ... 13.3.1. Lipids 13.3.2. Pigments 13.3.3. Phenolic compounds 13.4. Recent advances in gas-expanded liquids processes for marine products 13.5. Green-based biorefinery approaches for obtaining bioactive compounds from marine sources 13.6. Potential applications of the marine bioactive extracts in the food industry 13.7. Conclusions and future trends Acknowledgments References Chapter 14: Other supercritical fluid processing 14.1. Introduction 14.2. Main features and uses of SCCO2 14.3. Mechanism of action of CO2 as antimicrobial 14.4. Applications of supercritical fluids in shellfish and seafood 14.5. Conclusions Acknowledgments References Chapter 15: Equipment and recent advances in microwave processing 15.1. Introduction 15.2. Extraction technologies 15.2.1. Traditional extraction technologies 15.2.2. Emerging extraction technologies 15.3. Microwave-assisted extraction (MAE) 15.3.1. Principles of microwave treatment 15.3.2. Types of microwave processing equipment 15.3.3. Use of microwave technology for the extraction of bioactives from marine food sources 15.4. Conclusions and future trends References Chapter 16: Microwave-assisted extraction of proteins and carbohydrates from marine resources 16.1. Introduction 16.2. Methodology of applying microwave-assisted extraction technique 16.3. Microwave-assisted extraction of proteins and carbohydrates from algae 16.4. Microwave-assisted extraction of fish 16.5. Conclusion References Chapter 17: Microwave-assisted extraction of lipids, carotenoids, and other compounds from marine resources 17.1. Introduction 17.2. Microwave-assisted extraction 17.3. Microwave-assisted extraction of lipids from marine resources 17.3.1. Total lipids 17.3.2. Fatty acids 17.3.3. Comprehensive utilization 17.4. Microwave-assisted extraction of carotenoids from marine resources 17.5. Microwave-assisted extraction of other compounds from marine resources 17.6. Summary points Acknowledgments References Chapter 18: Other microwave-assisted processes: Microwaves as a method ensuring microbiological safety of food 18.1. The hazard for consumers related to microbial food contamination-The most important pathogens and food-borne diseases 18.2. Major microorganisms related to marine food: The largest and latest epidemic 18.2.1. Characteristics of pathogens most commonly transmitted via seafood 18.3. Structure of microorganisms 18.4. Possible lethal damage in the microbial cells 18.5. Microwaves as an alternative disinfection method 18.6. The impact of microwaves on bacterial cells References Further reading Chapter 19: Extraction of high-value compounds from marine biomass via ionic liquid-based techniques 19.1. Introduction 19.2. General structure and properties of ILs 19.3. High-value products from marine biomass 19.3.1. Omega-3 19.3.2. Phycobiliproteins 19.3.3. Astaxanthin 19.3.4. Polyphenols 19.3.5. Hydroxyapatite 19.4. Environmental and economic outlook on the extraction process of ILs 19.5. Conclusions and perspective References Chapter 20: Application of pressurized liquids to extract high-value compounds from marine biomass 20.1. Introduction 20.2. Principles 20.3. Operation 20.4. Effect of parameters 20.5. Advantages and disadvantages 20.6. Marine biomass 20.6.1. Marine algae and cyanobacteria 20.6.2. Marine invertebrates 20.6.3. Marine by-products 20.7. Pressurized liquid extraction of value-added compounds 20.7.1. Pigments 20.7.1.1. Chlorophylls 20.7.1.2. Carotenoids 20.8. Phycobiliproteins 20.8.1. Lipids and polyunsaturated fatty acids (PUFAs) 20.8.2. Polysaccharides 20.8.3. Proteins 20.8.4. Medicinal compounds and functional foods 20.9. Conclusions References Chapter 21: Application of plasma technologies for food preservation 21.1. Introduction 21.2. Principle of plasma generation 21.3. Plasma chemistry 21.4. Application of cold plasma for marine food products preservation 21.5. Application of cold plasma for marine protein alteration 21.6. Advantages and limitations of cold plasma in food preservation References Chapter 22: High-pressure processing for food preservation 22.1. Introduction 22.2. Mechanism and equipment of HPP 22.2.1. High-pressure vessel 22.2.2. Closures 22.2.3. Pressure generation 22.2.4. Pressure transmitting medium 22.2.5. Process control system 22.3. Working principles of HPP 22.3.1. Adiabatic heat of compression 22.3.2. Isostatic pressure principle 22.3.3. Le Chateliers principle 22.3.4. Microscopic ordering principle 22.4. Pressure-based processes 22.4.1. Application of pressure in conventional foods processing operations 22.4.2. Novel application of high-pressure in the food processing operations 22.4.2.1. Food pasteurization 22.4.2.2. Pressure-assisted thermal processing 22.4.2.3. Pressure-ohmic thermal sterilization 22.4.2.4. High-pressure freezing and thawing 22.4.2.5. High-pressure homogenization 22.4.2.6. Hyperbaric storage 22.5. Applications of HPP and HS to marine products 22.5.1. Effect of HPP on protein 22.5.2. Effect of HPP and HS on microorganisms 22.5.3. Effects of HPP and HS on the color of the seafood muscle 22.5.4. Effect of HPP and HS on endogenous enzymes 22.5.5. Effects of HPP and HS on texture 22.5.6. Effect of HPP and HS on lipid oxidation 22.6. Potential limitation of HPP processing Acknowledgments References Index Back Cover