دسترسی نامحدود
برای کاربرانی که ثبت نام کرده اند
برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید
در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید
برای کاربرانی که ثبت نام کرده اند
درصورت عدم همخوانی توضیحات با کتاب
از ساعت 7 صبح تا 10 شب
ویرایش: 1
نویسندگان: Miltiadis D. Lytras (editor)
سری: Next Generation Technology Driven Personalized Medicine and Smart Healthcare
ISBN (شابک) : 0128190434, 9780128190432
ناشر: Academic Press
سال نشر: 2019
تعداد صفحات: 422
زبان: English
فرمت فایل : PDF (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود)
حجم فایل: 20 مگابایت
در صورت تبدیل فایل کتاب Innovation in Health Informatics: A Smart Healthcare Primer به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.
توجه داشته باشید کتاب نوآوری در انفورماتیک سلامت: آغازگر مراقبت بهداشتی هوشمند نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.
نوآوری در انفورماتیک سلامت: آغازگر مراقبت بهداشتی هوشمند توضیح می دهد که چگونه جدیدترین پیشرفت ها در فناوری اطلاعات و ارتباطات راه را برای پیشرفت های جدید در مراقبت های بهداشتی هموار کرده است. این کتاب کاربردهای فعلی و آینده نگر را در زمینه ای که توسط یک ضرورت برای ارائه سیستم های مراقبت های بهداشتی کارآمد، بیمار محور و پایدار تعریف شده است، نشان می دهد. موضوعات مورد بحث شامل داده های بزرگ، تجزیه و تحلیل داده های پزشکی، هوش مصنوعی، یادگیری ماشین، واقعیت مجازی و افزوده، 5g و حسگرها، اینترنت اشیا، فناوری نانو و بیوتکنولوژی است. علاوه بر این، بحثی در مورد مسائل اجتماعی و سیاست گذاری برای اجرای مراقبت های بهداشتی هوشمند وجود دارد.
این کتاب منبع ارزشمندی برای دانشجویان کارشناسی و کارشناسی ارشد، پزشکان، محققان، پزشکان و دانشمندان داده است که علاقه مند هستند. در چگونگی کشف تقاطع بین بیوانفورماتیک و انفورماتیک سلامت.
Innovation in Health Informatics: A Smart Healthcare Primer explains how the most recent advances in information and communication technologies have paved the way for new breakthroughs in healthcare. The book showcases current and prospective applications in a context defined by an imperative to deliver efficient, patient-centered and sustainable healthcare systems. Topics discussed include big data, medical data analytics, artificial intelligence, machine learning, virtual and augmented reality, 5g and sensors, Internet of Things, nanotechnologies and biotechnologies. Additionally, there is a discussion on social issues and policy- making for the implementation of smart healthcare.
This book is a valuable resource for undergraduate and graduate students, practitioners, researchers, clinicians and data scientists who are interested in how to explore the intersections between bioinformatics and health informatics.
Cover Innovation in Health Informatics: A Smart Healthcare Primer Copyright Contents Section A Smart Healthcare in the Era of Bid Data and Data Science1 Section B Advanced Decision Making and Artificial Intelligence for Smart Healthcare99 Section C Emerging technologies and systems for smart healthcare187 Section D Social Issues and policy making for smart healthcare373 List of contributors Preface Acknowledgments Section A: Smart Healthcare in the Era of Bid Data and Data Science 1 Smart Healthcare: emerging technologies, best practices, and sustainable policies 1.1 Introduction 1.2 Bridging innovative technologies and smart solutions in medicine and healthcare 1.2.1 From genomics to proteomics to bioinformatics and health informatics 1.2.2 Ways of developing intelligent and personalized healthcare interventions 1.2.3 Advancing medicine and healthcare: insights and wise solutions 1.2.4 Ways of disseminating our healthcare experience 1.3 Visioning the future of resilient Smart Healthcare 1.4 Content management resilient Smart Healthcare systems cluster 1.4.1 Resilient Smart Healthcare learning management systems cluster 1.4.2 Resilient Smart Healthcare document management systems cluster 1.4.3 Resilient Smart Healthcare workflow automation 1.4.4 Resilient Smart Healthcare microcontent services and systems 1.4.5 Resilient Smart Healthcare collaboration systems and services 1.5 Networking technologies for resilient Smart Healthcare systems cluster 1.5.1 Smart systems 1.6 Data warehouses and distributed systems for resilient Smart Healthcare applications 1.6.1 Indicative smart applications for data warehouses in the context of resilient Smart Healthcare design 1.6.2 Smart systems 1.7 Analytics and business intelligence resilient Smart Healthcare systems cluster 1.7.1 Indicative smart applications 1.7.2 Smart systems 1.8 Emerging technologies resilient Smart Healthcare systems cluster 1.8.1 Indicative smart applications 1.8.2 Smart systems 1.9 Resilient Smart Healthcare innovation 1.9.1 The evolution of resilient smart 1.9.2 Indicative smart applications 1.10 Conclusion References Further reading 2 Syndromic surveillance using web data: a systematic review 2.1 Introduction: background and scope 2.2 Methodology: research protocol and stages 2.2.1 Stage 1: Preparation, research questions, and queries 2.2.2 Stage 2: Data retrieval 2.2.3 Stage 3: Data analysis: study selection and excluding criteria 2.2.4 Stage 4: Data synthesis 2.2.5 Stage 5: Results analysis 2.2.6 Stage 6: Writing 2.3 Results and analysis 2.3.1 RQ1: Is the academic interest growing or declining? 2.3.2 RQ2: Regarding syndromic surveillance using web data, what aspects have been explored until today in the available li... 2.3.2.1 Which diseases have been explored? 2.3.2.2 Where did studies take place (region, country)? 2.3.2.3 What is the web data source used or mentioned? 2.3.2.4 What is the method(s) used for analysis and interpretation of the data? 2.3.2.5 How many scientists have worked so far? 2.3.3 RQ3: What topics need further development and research? 2.4 Discussion and conclusions 2.4.1 Results 2.4.2 Information systems and epidemics 2.4.3 Impact to society, ethics, and challenges 2.4.4 Smart Healthcare innovations 2.4.5 Conclusions and outlook 2.5 Teaching assignments Acknowledgments Author contributions References Appendix: Included studies (alphabetical) 3 Natural Language Processing, Sentiment Analysis, and Clinical Analytics 3.1 Introduction 3.1.1 Natural Language Processing and Healthcare/Clinical Analytics 3.1.2 Sentiment analysis 3.2 Natural Language Processing 3.2.1 Traditional approach—key concepts 3.2.1.1 Preprocessing/tokenization 3.2.1.2 Lexical analysis 3.2.1.3 Syntactical analysis 3.2.1.4 Semantic analysis 3.2.2 Statistical spproach—key concepts 3.2.2.1 Corpus and its intricacies 3.2.2.1.1 Size 3.2.2.1.2 Balance 3.2.2.1.3 Representativeness 3.2.2.2 Part-of-Speech tagging 3.2.2.3 Treebank annotation 3.3 Applications 3.3.1 Sentiment analysis 3.3.2 Natural Language processing application in medical sciences 3.4 Conclusion 3.4.1 Future research directions 3.4.2 Teaching assignments References Further reading Section B: Advanced Decision Making and Artificial Intelligence for Smart Healthcare 4 Clinical decision support for infection control in surgical care 4.1 Introduction 4.2 Research methodology 4.2.1 Data collection methods 4.2.2 Design objectives 4.3 Clinical decision support prototype 4.3.1 Contextual background 4.3.2 Describing the surgical process using process-deliverable diagrams 4.3.3 Data sources, data collection procedure, and data description 4.3.4 Algorithms 4.3.5 Key performance indicators 4.3.6 Opportunities for local improvements 4.4 Exploratory data analysis 4.4.1 Appropriate use of prophylactic antibiotics 4.4.2 Maintenance of (perioperative) normothermia 4.4.3 Hygienic discipline in operating rooms regarding door movements 4.5 Discussion and implications 4.5.1 Limitations and further research 4.6 Conclusion 4.7 Teaching assignments References Further reading 5 Human activity recognition using machine learning methods in a smart healthcare environment 5.1 Introduction 5.2 Background and literature review 5.2.1 Human activity recognition with body sensors 5.2.2 Human activity recognition with mobile phone sensors 5.3 Machine learning methods 5.3.1 Artificial neural networks 5.3.2 k-Nearest neighbor 5.3.3 Support vector machine 5.3.4 Naïve Bayes 5.3.5 Classification and regression tree 5.3.6 C4.5 decision tree 5.3.7 REPTree 5.3.8 LADTree algorithm 5.3.9 Random tree classifiers 5.3.10 Random forests 5.4 Results 5.4.1 Experimental results for human activity recognition data taken from body sensors 5.4.1.1 Dataset information 5.4.1.2 Experimental results 5.4.2 Experimental results for human activity recognition data taken from smartphone sensors 5.4.2.1 Dataset information 5.4.2.2 Experimental results 5.5 Discussion and conclusion 5.6 Teaching assignments References 6 Application of machine learning and image processing for detection of breast cancer 6.1 Introduction 6.1.1 Mammograms 6.1.2 Preprocessing 6.1.3 Segmentation 6.1.4 Machine learning 6.1.4.1 Supervised machine learning 6.1.4.1.1 Classification 6.1.4.1.2 Regression 6.1.4.2 Unsupervised learning 6.1.4.2.1 Clustering 6.1.4.2.2 Association 6.1.4.3 Semisupervised learning 6.1.4.4 Reinforcement and deep learning 6.2 Literature review 6.3 Proposed work 6.3.1 Dataset 6.3.2 Noise removal (preprocessing) 6.3.3 Segmentation process 6.3.4 Feature extraction 6.3.5 Training model and testing 6.3.6 Classification 6.3.7 Performance evaluation metrics 6.3.8 f-Score measure 6.4 Results 6.5 Discussions 6.6 Conclusion 6.7 Research contribution highlights 6.8 Teaching assignments References 7 Toward information preservation in healthcare systems 7.1 Introduction 7.2 The literature review 7.2.1 Log files 7.2.2 Graph 7.2.3 Clustering 7.2.4 Matrices 7.3 Our approach 7.3.1 Background 7.3.2 Adaptation to multilevel 7.3.3 Complexity analysis 7.4 Experimental results 7.4.1 Performance results of the detection algorithm 7.4.2 Performance results of the recovery algorithm 7.4.3 Memory footprint analysis 7.5 Conclusion 7.6 Teaching assignments References Section C: Emerging technologies and systems for smart healthcare 8 Security and privacy solutions for smart healthcare systems 8.1 Introduction 8.2 Smart healthcare framework and techniques 8.3 Identified issues and solutions 8.3.1 Authentication 8.3.1.1 Internet of Things authentication 8.3.1.2 User authentication 8.3.1.3 Distributed authentication 8.3.2 Privacy-aware access control 8.3.2.1 Patient-centric access control 8.3.2.2 Staff access control 8.3.2.3 Break-glass access control 8.3.3 Anonymization 8.3.3.1 Statistical disclosure control 8.3.3.2 Privacy-preserving big data 8.4 Discussion 8.5 Conclusions and open research issues in future 8.6 Teaching assignments References Further reading 9 Cloud-based health monitoring framework using smart sensors and smartphone 9.1 Introduction 9.2 Background and literature review 9.2.1 Electrocardiogram in cloud-based mobile healthcare 9.2.2 Electroencephalogram in cloud-based mobile healthcare 9.3 Signal acquisition, segmentation, and denoising methods 9.3.1 Adaptive rate acquisition 9.3.2 Adaptive rate segmentation 9.3.3 Adaptive rate interpolation 9.3.4 Adaptive rate filtering 9.4 Feature extraction methods 9.4.1 Autoregressive Burg model for spectral estimation 9.5 Machine learning methods 9.6 Results 9.6.1 Experimental results for electrocardiogram 9.6.2 Experimental results for electroencephalogram 9.7 Discussion and conclusion 9.8 Teaching assignments References 10 Mobile Partogram—m-Health technology in the promotion of parturient’s health in the delivery room 10.1 Introduction 10.2 The Mobile Partogram conception—m-Health technology in parturient care in the delivery room 10.3 Participatory user-centered interaction design to support and understand the conception of partograma mobile 10.4 Identifying needs and defining requirements 10.4.1 Design of alternatives 10.5 Building an interactive version (high-fidelity prototype) 10.6 Evaluation (usability) 10.7 Final considerations 10.8 Teaching assignments References 11 Artificial intelligence–assisted detection of diabetic retinopathy on digital fundus images: concepts and applications i... 11.1 Introduction 11.2 Diabetic retinopathy in the National Health Service 11.3 Predictive analytics in diabetic retinopathy screening 11.3.1 Big data in the context of diabetic retinopathy screening 11.3.2 Predictive analytics in diagnostic retina screening 11.3.3 Evaluation and performance measures 11.4 Implementation in a smart healthcare setting 11.4.1 Upskilling the workforce 11.4.2 Multimodal imaging in diabetic retinopathy: integrating optical coherent tomography 11.5 Challenges 11.5.1 Adoption and clinical governance 11.5.2 Ethical and legal compliance 11.6 Conclusion References 12 Virtual reality and sensors for the next generation medical systems 12.1 Introduction 12.2 Related work 12.3 The proposed methodology 12.3.1 Postural analysis stage 12.3.2 Virtual modeling stage 12.3.3 Self-assessment stage 12.3.4 Analysis and presentation stage 12.4 Experimental results 12.5 Conclusions and future work 12.6 Teaching assignments Acknowledgments References 13 Portable smart healthcare solution to eye examination for diabetic retinopathy detection at an earlier stage 13.1 Introduction 13.2 Fundus eye images: the fundus photography and its acquisition 13.3 Fundus eye imaging and problems 13.4 Smartphone fundus cameras in the market 13.4.1 Volk iNview 13.4.2 Peek vision 13.4.3 D-EYE smartphone-based retinal imaging system 13.4.4 ODocs eye care 13.5 What is the problem? 13.6 Impact of the problem 13.7 Proposed solution 13.8 Methodology and validation 13.9 Popular ridge detectors for vessel segmentation 13.10 Proposed method 13.11 Experimental results 13.12 Conclusion and future work 13.13 Teaching assignments References Further reading 14 Improved nodule detection in chest X-rays using principal component analysis filters 14.1 Introduction 14.2 Looking at rib structure from signal processing point-of-view 14.3 Data acquisition 14.4 System design 14.4.1 Local normalization 14.4.2 Multiscale nodule detection 14.4.3 Detection of nodules in discrete X-ray images 14.5 Experiment 14.6 Results 14.7 Implication of automated lung nodules detection for future generation medical systems 14.8 Discussion and conclusion 14.9 Teaching assignments References Further reading 15 Characterizing internet of medical things/personal area networks landscape 15.1 Introduction 15.1.1 Internet of medical things and health informatics 15.1.2 Personal area networks 15.2 Architectural landscape 15.2.1 Physical components 15.2.1.1 Physical components 15.2.2 Network component 15.2.2.1 Bluetooth 15.2.2.1.1 Protocol stack 15.2.2.1.2 Pico and scatter networks 15.2.2.2 Low-rate WPAN 15.2.2.3 High-rate WPAN 15.2.2.4 Body area networks 15.3 Prevalent internet of medical things applications 15.3.1 Internet of medical things services and applications 15.3.2 Internet of medical things companies leading the way 15.4 Conclusions and future directions 15.4.1 Future research directions 15.4.2 Recommended assignments References Section D: Social Issues and policy making for smart healthcare 16 Threats to patients’ privacy in smart healthcare environment 16.1 Introduction 16.2 Definitions 16.3 Legislation and policy 16.3.1 Privacy rule in Health Insurance and Portability Accountability Act 16.3.2 Federal Information Security Management Act of 2002 16.3.3 Cyber Enhancement Act 2014 16.3.4 NIST Cyber Security Framework 16.4 Typical smart healthcare architecture 16.4.1 Network layer 16.4.1.1 Local Area Network 16.4.1.2 Personal Area Network 16.4.1.3 Wide Area Network 16.4.1.4 Public Key Infrastructure 16.4.2 Technology layer 16.4.3 Applications layer 16.5 Typical security threats 16.5.1 Attacks’ classification 16.5.1.1 Social engineering attacks 16.5.1.2 Insider threats 16.5.1.3 Denial of Service 16.5.1.4 Viruses, trojans, and worms 16.5.1.5 Typical hacking process 16.6 Conclusion 16.6.1 Future research directions 16.6.2 Teaching assignments References Further reading 17 Policy implications for smart healthcare: the international collaboration dimension 17.1 Introduction 17.2 The smart healthcare utilization framework 17.3 International collaboration for resilient smart healthcare References Further reading Index Back Cover