ورود به حساب

نام کاربری گذرواژه

گذرواژه را فراموش کردید؟ کلیک کنید

حساب کاربری ندارید؟ ساخت حساب

ساخت حساب کاربری

نام نام کاربری ایمیل شماره موبایل گذرواژه

برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید


09117307688
09117179751

در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید

دسترسی نامحدود

برای کاربرانی که ثبت نام کرده اند

ضمانت بازگشت وجه

درصورت عدم همخوانی توضیحات با کتاب

پشتیبانی

از ساعت 7 صبح تا 10 شب

دانلود کتاب Innovation Analytics: Tools For Competitive Advantage

دانلود کتاب تجزیه و تحلیل نوآوری: ابزارهایی برای مزیت رقابتی

Innovation Analytics: Tools For Competitive Advantage

مشخصات کتاب

Innovation Analytics: Tools For Competitive Advantage

ویرایش:  
نویسندگان: , ,   
سری:  
ISBN (شابک) : 1800610009, 9781800610002 
ناشر: World Scientific 
سال نشر: 2023 
تعداد صفحات: 323
[324] 
زبان: English 
فرمت فایل : PDF (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود) 
حجم فایل: 20 Mb 

قیمت کتاب (تومان) : 41,000

در صورت ایرانی بودن نویسنده امکان دانلود وجود ندارد و مبلغ عودت داده خواهد شد



ثبت امتیاز به این کتاب

میانگین امتیاز به این کتاب :
       تعداد امتیاز دهندگان : 1


در صورت تبدیل فایل کتاب Innovation Analytics: Tools For Competitive Advantage به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.

توجه داشته باشید کتاب تجزیه و تحلیل نوآوری: ابزارهایی برای مزیت رقابتی نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.


توضیحاتی درمورد کتاب به خارجی



فهرست مطالب

Contents
About the Editors
Chapter 1 Introduction
	1. Introduction
	2. Innovation Overview
	3. Analytics
	4. Review of Research Studies
	5. Analytics and Innovation
		5.1. Product innovation
		5.2. Process innovation
	6. Summary of Chapters
		6.1. Product and process innovation
		6.2. Artificial intelligence
		6.3. Data engineering
	References
Part 1 Product and Process Innovation
	Chapter 2 Consumer Product Innovation and the Opportunities for Data Analytics
		1. Introduction
			1.1. Problem: The tempo of innovation
			1.2. Data-driven models for marketing innovation
		2. Major Themes of the Competitive Landscape
			2.1. Key drivers of big data perceptions and needs
			2.2. Innovator unmet needs
		3. Information-Driven Opportunities and Technologies
			3.1. Finding emerging technologies and products
			3.2. Using search and sales data
		4. Discussion
		5. Further Research
		6. Conclusion
		References
	Chapter 3 R&D in Product and Process Innovation — System Design of Multidisciplinary Products by Applying Mass Customization Approaches
		1. Introduction
		2. Literature Review
			2.1. System design
		3. System Architecture Using Function–Behavior–State Modeling
		4. A Method to Develop Product Architecture
		5. Results and Discussion
			5.1. Step 1: Analysis of the existing products
			5.2. Step 2: FBS modeling
			5.3. Step 3: Identify similarities and differences in FBS models
			5.4. Step 4: Product architecture development in SA-CAD
				5.4.1. Construction of building blocks for architecture modeling
				5.4.2. Knowledge base development at SA-CAD
				5.4.3 Metamodel development in SA-CAD
				5.4.4 System modeling in SA-CAD
				5.4.5 System architectures as a parameter network
				5.4.6 Display entities and parameters in design structure matrix
			5.5. Step 5: Identify similarities and differences among the products in terms of their entities
			5.6. Step 6: Product platform development
		6. Managerial and Social Implications
		7. Conclusion
		References
	Chapter 4 Business Model Innovation Analytics for Small to Medium Enterprises
		1. Introduction
			1.1. The need for a data-driven approach for BMI
		2. Theoretical Background
			2.1. The evolution of innovation management
			2.2. What is business model innovation?
			2.3. Dynamic capabilities for BMI
			2.4. Data analytics
		3. Toward a Business Model Innovation Analytics Framework
			3.1. Framework proposal
			3.2. Framework usage
				3.2.1. Recommendation 1: Start small but start
				3.2.2. Recommendation 2: Build multidisciplinary teams
				3.2.3. Recommendation 3: Rethink structure, solidify BMI analytics capability
		4. Concluding Remarks
		Acknowledgment
		References
	Chapter 5 Analysis of Factors Influencing Product and Process Innovation for Smart Manufacturing
		1. Introduction
		2. Literature Review
		3. Methodology
			3.1. Suggesting compromise solu
		4. Case Study
			4.1. Results and discussion
			4.2. Compromise solution
		5. Conclusion
			5.1 Future scope
		Appendix A
			A.1. Summary of the notations used in this study
			A.2. Sample calculation to compute three indices: Utility, regret and VIKOR
		References
Part 2 Artificial Intelligence
	Chapter 6 AI-Driven Innovation: Leveraging Big Data Analytics for Innovation
		1. Introduction
		2. Literature Review: The Role of AI/Big Data Analytics in Innovation
		3. Innovation Analytics: Using AI to Drive Innovation
			3.1. Innovation analytics for radical innovation
			3.2. Innovation analytics for incremental/sustaining innovation
		4. AI-driven Innovation: Integrating AI/BDA to Drive Innovation
		5. Conclusion
		References
	Chapter 7 A Survey of IIoT and AI-Enabled Manufacturing Systems: Use Case Perspective
		1. Introduction
			1.1. Background and context
			1.2. Top 10 disruptors for manufacturing systems
		2. Conceptual Framework: IIoT as Sensory Organs of Manufacturing Systems
			2.1. Eye: Sense of vision/sight
			2.2. Ear: Sense of sound/hearing
			2.3. Skin: Sense of proximity/touch
			2.4. Nose: Sense of smell/odor
			2.5. Tongue: Sense of quality/taste
		3. AI as the Mind and Central Nervous System in Manufacturing Systems
			3.1. Unsupervised learning
			3.2. Supervised learning
			3.3. Deep learning
			3.4. Reinforcement learning
		4. Manufacturing IIoT Landscape: Use Case Perspective
			4.1. Product design
			4.2. Warehousing and logistics
			4.3. Core manufacturing
				4.3.1. Planning and scheduling in manufacturing systems
				4.3.2. Inventory management systems
				4.3.3. Predictive maintenance
		5. Futuristic/Emerging Applications: IT–OT Integration, Edge Computing, and Technological Aspects
			5.1. Technology aspects
		6. Conclusions and Directions for Future Research
			6.1. Directions for future research
		Acknowledgments
		References
	Chapter 8 Fighting Food Waste: How Can Artificial Intelligence and Analytics Help?
		1. Introduction
		2. Some Definitions on Food Waste
		3. Food Waste Reduction Under Different Tracking Conditions
			3.1. Temperature monitoring and no control
			3.2. Temperature monitoring and control
			3.3. No temperature control and monitoring
		4. A Multi-Criteria Decision-Making Framework and Analytics Implementation Approach
			4.1. Innovative analytics approach to reduce food waste
		5. Scope for Further Research Involving Technology Demonstration and Case Studies
		Acknowledgment
		References
	Chapter 9 Intelligent Traffic Solutions (Role of Machine Learning and Machine Reasoning)
		1. Introduction
		2. Goals & Objectives
		3. Literature Review
			3.1. Innovative data acquisition
			3.2. Review of machine learning and machine reasoning
			3.3. Intelligent parking tools and techniques
		4. Traffic Solutions
		5. Traffic Solution Technology Backgrounds
			5.1. Passive infrared detectors
			5.2. Active infrared detectors
			5.3. Pneumatic tubes
				5.3.1. Inductive Loop
			5.4. Piezoelectric
			5.5. Thermal imaging
				5.5.1. Video imaging
			5.6. Manual counting
		6. Parking Solutions
			6.1. Smart parking tools and technologies
				6.1.1. Wireless sensor network
				6.1.2. Parking guidance system
				6.1.3. VANET
				6.1.4. Inductive proximity sensor
				6.1.5. Active ultrasonic sensor
				6.1.6. Radio frequency identification (RFID)
				6.1.7. LIDAR
				6.1.8. Camera detection
				6.1.9. Magnetometer
		7. Problem Statement
		8. Methodology
		9. Results
			9.1. Portland, Oregon
			9.2. Chicago, Illinois
			9.3. New York, New York
			9.4. San Francisco, California
			9.5. Pittsburg, Pennsylvania
			9.6. Austin, Texas
			9.7. Columbus, Ohio
		10. Technology Comparison Tables
			10.1. Traffic solution technology comparison table: Pedestrians and bikes
			10.2. Traffic sensor technology landscape analysis: Vehicles
			10.3. Traffic sensor technology landscape analysis: Connected vehicles
			10.4. Parking sensor technology landscape analysis: Vehicles
		11. Expert Panel
		12. Use Cases
		13. Considerations When Designing a Solution
		14. Recommendations
		15. Peek into the Future
		16. Suggestions for Future Research
		17. Conclusion
		References
		Appendix A: Expert Survey Questions
		Appendix B: Tables
Part 3 Data Engineering
	Chapter 10 Mitigating the Proclivity Toward Multiple Adjustments Through Innovative Forecasting Support Systems
		1. Introduction
		2. Literature Review
			2.1. Forecasting
			2.2. The human factor in supply chain forecasting
			2.3. Forecast support system
			2.4. Judgmental adjustments
			2.5. Multiple adjustments in forecasting
		3. Methodology
		4. Data Analysis and Findings
		5. Conclusion
		Acknowledgments
		References
	Chapter 11 Fuzzy Logic-Based Multi-Objective Decision-Making Model for Design Evaluation in an Open Innovation Environment
		1. Introduction
		2. Terminologies in Multi-Criteria Decision-Making
			2.1. Alternatives
			2.2. Criteria
			2.3. Weights
			2.4. Decision-Makers (DMs)
			2.5. Decision matrix
		3. Basics of Fuzzy Sets and Fuzzy Numbers
		4. Fuzzy Number-Based Multi-Criteria Decision-Making Model
			4.1. Formulate the number of evaluation criteria and the design alternatives
			4.2. Perform linguistic rating of the design alternative using domain experts and decision-makers
			4.3. Develop fuzzy sets and fuzzy numbers for transforming the linguistic variable in a numerical order scale
			4.4. Select suitable weights for the criterion to describe the relative importance
			4.5. Apply intersection on the fuzzy numbers of the performance ratings with respect to all the criteria for each alternative as aggregated evaluation
		5. Application of Proposed Method for Design Evaluation of Mobile Robot Chassis: A Case Study
			5.1. Linguistic ratings of mobile robot chassis
			5.2. Formulation of fuzzy sets
			5.3. Weighted logical decision-making function
		6. Conclusions
		Acknowledgments
		References
	Chapter 12 A Sentiment-Based Approach for Innovative Product Sales Forecasting
		1. Introduction
		2. Literature Review
			2.1. Importance of UGC for sentiment approach
			2.2. UGC-based innovative analytics for sales prediction
		3. Methodology
			3.1. Research design
			3.2. Sentiment analysis
			3.3. Opinion selection and sentiment analysis
			3.4. Variables summary
			3.5. The prophet forecasting model
		4. Findings
			4.1. Model comparison with performance matrix
			4.2. Variable improvement
		5. Discussion of Results
		6. Conclusion and Implication
			6.1. Limitation and future direction
		Acknowledgment
		References
	Chapter 13 Conclusion
		1. Product and Process Innovation
			1.1. Customer perspective
			1.2. Manufacturing perspective
			1.3. R&D perspective
			1.4. Business model perspective
		2. Artificial Intelligence
		3. Data Engineering
		References
Index




نظرات کاربران