دسترسی نامحدود
برای کاربرانی که ثبت نام کرده اند
برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید
در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید
برای کاربرانی که ثبت نام کرده اند
درصورت عدم همخوانی توضیحات با کتاب
از ساعت 7 صبح تا 10 شب
دسته بندی: پزشکی ویرایش: نویسندگان: Jun Sun سری: Physiology in Health and Disease ISBN (شابک) : 3030679500, 9783030679507 ناشر: Springer سال نشر: 2021 تعداد صفحات: 513 زبان: English فرمت فایل : PDF (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود) حجم فایل: 9 مگابایت
در صورت تبدیل فایل کتاب Inflammation, Infection, and Microbiome in Cancers: Evidence, Mechanisms, and Implications به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.
توجه داشته باشید کتاب التهاب، عفونت و میکروبیوم در سرطان ها: شواهد، مکانیسم ها و پیامدها نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.
این کتاب خلاصه و بحثی از پیشرفتهای التهاب و عفونت در سرطانهای مختلف ارائه میدهد. نویسندگان عفونتهای ویروسی شناخته شده کلاسیک در سرطان، نقشهای جدید سایر پاتوژنها (مانند باکتریها و قارچها)، و همچنین نشانگرهای زیستی برای تشخیص و درمان را پوشش میدهند. علاوه بر این، فصلها پیشرفت درمان ایمنی، سلولهای بنیادی و نقش میکروبیوم در پاتوفیزیولوژی سرطانها را برجسته میکنند.
خوانندگان بینشهایی در مورد جوامع میکروبی پیچیدهای که در بیشتر سطوح خارجی انسان ساکن هستند و نقش کلیدی در سلامتی و بیماری اختلال در تعاملات میکروب میزبان اغلب منجر به تغییر پاسخ های میزبان می شود که می تواند باعث پیشرفت سرطان شود. بنابراین، این کتاب نقش های نوظهور میکروبیوم در پاتوژنز سرطان ها و نتیجه درمان را برجسته می کند. تمرکز بر مفاهیم مکانیکی است که زیربنای روابط پیچیده بین میزبان و میکروب ها است. روشهایی که میتوانند عفونت را مهار کنند، التهاب مزمن را سرکوب کنند و دیسبیوز را معکوس کنند، بهعنوان وسیلهای برای بازگرداندن تعادل بین میزبان و میکروبها مورد بحث قرار گرفتهاند.این کار جامع برای محققان مفید خواهد بود. و دانشجویان علاقه مند به بیماری های عفونی، میکروبیوم و سرطان و همچنین پزشکان و فیزیولوژیست های عمومی.This book offers a summary and discussion of the advances of inflammation and infection in various cancers. The authors cover the classically known virus infections in cancer, novel roles of other pathogens (e.g. bacteria and fungi), as well as biomarkers for diagnosis and therapy. Further, the chapters highlight the progress of immune therapy, stem cells and the role of the microbiome in the pathophysiology of cancers.
Readers will gain insights into complex microbial communities, that inhabit most external human surfaces and play a key role in health and disease. Perturbations of host-microbe interactions often lead to altered host responses that can promote cancer development. Thus, this book highlights emerging roles of the microbiome in pathogenesis of cancers and outcome of therapy. The focus is on mechanistic concepts that underlie the complex relationships between host and microbes. Approaches that can inhibit infection, suppress chronic inflammation and reverse the dysbiosis are discussed, as a means for restoring the balance between host and microbes.This comprehensive work will be beneficial to researchers and students interested in infectious diseases, microbiome, and cancer as well as clinicians and general physiologists.Preface Contents About the Editor Chapter 1: Microbiome and the Hallmarks of Cancer 1.1 Introduction 1.1.1 Oncomicrobes 1.1.2 Hallmarks of Cancer 1.1.3 Microbiota and Cancer 1.2 Mechanisms of Microbes and the Hallmarks of Cancer 1.2.1 Cellular Proliferation 1.2.2 Deregulating Cellular Energetics 1.2.3 Avoiding Immune Destruction 1.2.4 Tumor-Promoting Inflammation 1.2.5 Genome Instability and Mutation 1.2.6 Remaining Hallmarks 1.3 Additional Microbial Factors that Influence Cancer 1.3.1 Establishing a Chronic Infection 1.3.2 Microbial Interactions 1.3.3 Location and Tumorigenesis 1.4 Conclusion References Chapter 2: Microbiome in Human Gastrointestinal Cancers 2.1 Introduction 2.2 Microbiome in Gastrointestinal Health 2.2.1 Functions of Bacteria in the Gastrointestinal Tract 2.2.2 Functions of Virus in the Gastrointestinal Tract 2.2.3 Functions of Fungi in the Gastrointestinal Tract 2.2.4 Functions of Archaea in the Gastrointestinal Tract 2.3 Microbiome in Gastrointestinal Cancers 2.3.1 Microbiome Alteration in Esophageal Cancer 2.3.2 Microbiome Alteration in Gastric Cancer 2.3.3 Microbiome Alteration in Pancreatic Cancer 2.3.4 Microbiome Alteration in Liver Cancer 2.3.5 Microbiome Alteration in Colorectal Cancer 2.4 Gut Microbe Interactions in Gastrointestinal Health and Cancer 2.5 Therapeutic Manipulation of the Gut Microbiome for Prevention and Treatment of Gastrointestinal Cancers 2.5.1 Fecal Microbiome Transplantation 2.5.2 Phage Therapy 2.5.3 Use of Antimicrobials 2.5.4 Probiotics and Prebiotics References Chapter 3: The Gut Microbiome and Colorectal Cancer 3.1 Introduction 3.2 Dysbiosis and CRC 3.3 CRC-Associated Microbiota 3.3.1 Fusobacterium nucleatum 3.3.2 Enterotoxigenic Bacteroides fragilis 3.3.3 Escherichia coli 3.3.4 Streptococcus gallolyticus (Previously Known as Streptococcus bovis Biotype I and II/2) 3.3.5 Salmonella 3.4 Mechanisms by Which the Gut Microbiome Contribute to CRC 3.4.1 Modulation of Host Immune Responses 3.4.2 Stimulation of Cellular Proliferation 3.4.3 Promotion of DNA Damage 3.4.4 Production of Metabolites 3.4.4.1 Short-Chain Fatty Acids 3.4.4.2 Secondary Bile Acids 3.5 Conclusion References Chapter 4: The Impacts of Salmonella Infection on Human Cancer 4.1 Introduction 4.2 Human Exposure Data 4.2.1 Non-typhoidal Salmonella 4.2.2 Typhoidal Salmonella 4.3 Association with Human Cancer 4.3.1 Colorectal Cancer and Its Precursor Lesions 4.3.2 Biliary Tract Cancer and Its Precursor Lesions 4.4 Summary and Future Direction References Chapter 5: Biomarkers of Esophageal Cancers and Precancerous Lesions 5.1 Introduction 5.2 Biomarkers of Esophageal Cancer and Precancerous Lesions in Clinical Application 5.2.1 Human Epidermal Growth Factor Receptor 2 or HER2 5.2.1.1 HER2 Amplification and Overexpression in Esophageal Cancer 5.2.1.2 HER2 Clinical Application in EAC 5.2.2 Programmed Cell Death 1 or PD-L1: Immunotherapy and Expression in Esophageal Cancer 5.2.2.1 PD-L1 Immunotherapy in Clinical Application 5.2.2.2 PD-L1 Expression in Esophageal Cancer 5.2.3 Vascular Endothelial Growth Factor 5.2.3.1 VEGF Clinical Application in EAC 5.2.3.2 VEGF Expression in Esophageal Carcinoma 5.2.4 Other Biomarkers in Clinical Application for Diagnosis of EAC and Precancerous Lesions 5.3 Molecular Markers in Development for Esophageal Cancer and Precancerous Lesions 5.3.1 Gene Mutations and Aberrant Expression in Esophageal Cancer and Precancerous Lesions 5.3.1.1 Esophageal Adenocarcinoma 5.3.1.2 Esophageal Squamous Cell Carcinoma 5.3.1.3 Molecular Gene Mutation: ESCC Versus EAC 5.3.2 Epigenetic Markers: Methylation, miRNA, and lncRNA 5.3.2.1 DNA Methylation 5.3.2.2 MicroRNAs (miRNAs) 5.3.2.3 Long Non-coding RNAs (lncRNAs) 5.4 Microbiome Application in Esophageal Cancer and Precancerous Lesion 5.5 Other Promising Biomarkers for Esophageal Cancer 5.5.1 Circulating Tumor Cells 5.5.2 Circulating Cell-Free DNA 5.5.3 Breath Volatile Organic Compounds 5.6 Conclusion and Future Directions References Chapter 6: Epithelial and Immune Cell Responses to Helicobacter pylori That Shape the Gastric Tumor Microenvironment 6.1 Introduction: Helicobacter pylori and the Attributes of Virulence 6.2 Early Epithelial and Immune Cell Responses to Helicobacter Infection 6.2.1 Induction of Protective Responses 6.2.2 Recruitment and Polarization of Macrophages 6.2.3 Recruitment and Polarization of Myeloid-Derived Suppressor Cells 6.2.4 Induction of CD44V9 and Metaplasia 6.2.5 Induction of Programmed Death-Ligand 1 (PD-L1) 6.3 Inflammation and Hypoxia 6.3.1 Regulation of Inflammation by Hypoxia-Inducible Factors (HIFS) 6.3.2 HIFs and Cancer 6.3.3 HIF Signaling Targets 6.3.4 HIF-1a and Increased Glycolysis in Tumor Cells 6.4 Impact of Early Epithelial and Immune Cell Responses on the Gastric Tumor Microenvironment 6.4.1 Defining the Gastric Tumor Microenvironment 6.4.2 Resistance to Immunotherapy 6.5 Conclusions References Chapter 7: Gut Microbiome and Liver Cancer 7.1 Liver Cancer Types and Risk Factors 7.1.1 Hepatocellular Carcinoma 7.1.2 Intrahepatic Cholangiocarcinoma 7.1.3 Metastatic Liver Malignancies 7.2 Carcinogenesis of Liver Cancer 7.2.1 Oncogenic Pathways in HCC 7.2.2 Oncogenic Pathways in Cholangiocarcinoma 7.3 Infectious Disease and Liver Cancer 7.3.1 Chronic Viral Hepatitis and HCC 7.3.2 Liver Fluke and Cholangiocarcinoma 7.4 Overview of Gut Microbiome and Cancer 7.5 Relevant Liver and GI Features for the Gut-Liver Axis 7.5.1 Intrahepatic Circulation 7.5.2 Liver as an Immunological Organ 7.5.3 Pattern Recognition Receptors 7.5.4 Intestinal Barrier 7.5.5 Bacterial Translocation 7.6 Gut Microbiome and Liver Cancer-Associated Conditions 7.6.1 Obesity 7.6.2 Nonalcoholic Fatty Liver Disease 7.6.3 Alcoholic Liver Disease 7.6.4 Cirrhosis 7.6.5 Autoimmune Hepatitis 7.7 Gut Microbiome Regulates Liver Cancer 7.7.1 Lipopolysaccharides 7.7.2 Bile Acids 7.7.3 Short-Chain Fatty Acids 7.7.4 Immune Cells 7.8 Gut Microbiome and Immunotherapy 7.9 Summary References Chapter 8: The Microbiome and Urologic Cancers 8.1 Introduction 8.2 The Urinary System 8.3 Bladder Cancer and Microbes 8.4 Renal Cell Carcinoma 8.5 Prostate Cancer 8.6 Gut Microbiome and Urinary Cancers 8.7 Conclusion References Chapter 9: Role of Infections and Tissue Inflammation in the Pathology of the Fallopian Tube and High-Grade Serous Ovarian Can... 9.1 Introduction 9.2 Classification of Epithelial Ovarian Cancer 9.3 HGSOC: Molecular Characteristics, Origins, and Main Risk Factors 9.4 The Fallopian Tube as a Tissue of Origin of Ovarian Cancer 9.5 Epidemiology Studies of HGSOC Prevalence and Main Risk Factors 9.5.1 Model of ``Incessant´´ Ovulation as the Main Driver of HGSOC 9.5.2 The Inheritable Risk Associated with BRCA1/2 Status 9.5.3 Recurrent Episodes of Infection and the Risk of HGSOC Development 9.5.4 The Serologic Evidence of Chlamydia Infection in Cancer Patients 9.5.5 Coinfections and HGSOC 9.5.6 Contribution of the Microbiota to the Inflamed Environment 9.5.7 Infertility and Risk of HGSOC Development 9.6 Infection of the Fallopian Tube Pathogen-Host Interaction and Long-Term Changes in Homeostasis 9.7 Patient-Derived Organoids: In Vitro Diseases Modeling and Translational Applications 9.8 Regulation of the Epithelial Renewal in the Upper Genital Tract 9.8.1 Stem Cells of the Ovary 9.8.2 Stem Cells of the Fallopian Tube- Pax8+ Progenitors 9.9 Chronic Chlamydia Infection in Human Fallopian Tube Organoids 9.10 Patient-Derived HGSOC Organoids: Evidence of Early Changes in Regulation of the Stem-Cell Niche 9.11 Wnt Signaling in Health and Disease 9.12 Tissue Inflammation as a Precursor of the Tumor Microenvironment 9.13 Tumor Heterogeneity and Local Microenvironment 9.14 Inflammation and Response to Immunotherapy 9.15 Contribution of the Microbiota to Disease Progression and Response to Immunotherapy 9.16 Future Directions in the Research of Tubal Pathology and HGSOC Development References Chapter 10: Commensal Microbes and Their Metabolites: Influence on Host Pathways in Health and Cancer 10.1 Introduction 10.2 Microbe-Derived Metabolites 10.2.1 Bile Acids 10.2.2 Mediators of Oxidative Stress 10.2.3 Polyamines 10.2.4 Short-Chain Fatty Acids 10.3 Future Directions References Chapter 11: Diet, Microbiome, Inflammation, and Cancer 11.1 Introduction 11.2 Microbiome, Inflammation, and Cancer 11.3 Diet and Microbiome Interactions 11.3.1 Diet Pattern 11.3.2 Key Components of Inflammation-Related Diet 11.3.3 Dietary Fiber 11.3.4 Fat 11.3.5 Protein 11.3.6 Micronutrients and Bioactive Components of Plant Foods 11.3.7 Diet and Oral Microbiome 11.4 Cancer Related to Diet, the Microbiome, and Inflammation 11.4.1 Colorectal Cancer 11.4.2 Liver Cancer 11.4.3 Pancreatic Cancer 11.4.4 Other Malignancies 11.5 Conclusions and Clinical Implications References Chapter 12: Autophagy and Cancer: Current Biology and Drug Development 12.1 Introduction 12.2 Autophagy Pathway 12.2.1 Autophagy Overview 12.2.2 Initiation of Phagophore Formation 12.2.3 Expansion and Elongation of the Autophagosome Membrane 12.2.4 Cargo Selection 12.2.5 Fusion with the Lysosome 12.3 Dual Roles of Autophagy in Cancer Initiation Versus Progression 12.3.1 Autophagy and Cancer Suppression 12.3.2 Autophagy and Cancer Progression 12.3.3 Autophagy and Cancer Stem Cells 12.4 Mitophagy: Adaptation to Drive Tumor Progression 12.4.1 Mitophagy Overview 12.4.2 Mitophagy and Cancer Metabolism 12.4.3 Mitophagy and Iron Homeostasis 12.5 Autophagy-Targeted Drug Development for Cancer Therapy 12.5.1 Clinical Trials Targeting Autophagy for Cancer Therapy 12.5.2 Targeting Autophagy in CSCs 12.5.3 Targeting Mitophagy 12.5.4 Targeting Ferroptosis 12.5.5 Vitamin D and Autophagy 12.6 Conclusions/Perspectives References Chapter 13: Mitochondrial Regulation of Inflammation in Cancer 13.1 Introduction 13.2 Mitochondrial ROS 13.3 Mitochondrial Dysfunction 13.4 Mitochondrial ROS and Dysfunction Promote Inflammation 13.5 Mitochondria and Cellular Signaling During Inflammation 13.6 Hypoxia and Inflammation 13.7 Mitochondria and Cytokine Production via Inflammasomes 13.8 Targeting Inflammation and the Mitochondria 13.9 Conclusion References Chapter 14: Modern Germ-Free Study Designs and Emerging Static Housing Technology in a Growing ``Human Microbiome´´ Research M... 14.1 Introduction 14.2 Market Value and Exponential Growth of the GF and the Human Microbiome Industry 14.3 Basic Animal Germ-Free Biology and Gnotobiology from Studies in the 1960s 14.4 Retroviruses and mdr1a May Influence Pharmacodynamic/Microbiome Studies in GF Mice 14.5 Mechanism of Disease in Modern GF Study Designs 14.5.1 The Gut Microbiota of Preterm Infants Has a Unique Effect in the Gut of GF Animals 14.5.2 The Human Gut Microbiota from Cancer Patients Induce Cancer in GF Animals 14.5.3 The Human Microbiome Modulates Immunotherapies and Side Effects in GF Animals 14.5.4 The Variable Human Microbiota May Induce Inflammatory Bowel Disease in GF Models 14.5.5 Nutrients and Microbial Metabolites Enhance Therapeutic Efficacy of Immunomodulators 14.5.6 Germ-Free Models Enable the Study of NAFLD and Oral and Lung Cancer 14.5.7 Modern Germ-Free Models Provide Insight on Muscle-Skeletal, Mental, and Brain Health 14.5.8 Sex-dependent Microbiome-driven Vascular, Immune Cell Biology, and Disease Gender Bias 14.5.9 Single Bacterial Genes Modulate the Intestinal Phenotype in GF Models 14.5.10 Human Enteroviral Infections Induce Microbiome Changes in Humanized GF Models 14.5.11 GF Animals as Models to Study the Biology and Filtration Materials Against COVID-19 14.6 Historic Evolution of Germ-Free Housing Technologies 14.7 Portable Emerging Non-pressurized Housing GF Technology 14.8 Conclusion References Chapter 15: Machine Learning in Identification of Disease-Associated Microbiota 15.1 Introduction 15.2 Materials 15.2.1 Software 15.2.2 Datasets 15.3 Methods 15.3.1 Data Import 15.3.2 Data Preprocessing 15.3.3 Random Forest 15.3.4 Support Vector Machine 15.3.5 Logistic Regression 15.3.6 Multi-layer Perceptron Neural Network 15.3.7 Model Evaluation 15.3.8 Feature Aggregation 15.4 Results 15.5 Summary References Chapter 16: Mediation Analysis of Microbiome Data and Detection of Causality in Microbiome Studies 16.1 Introduction 16.2 Traditional Mediation Models 16.2.1 Typical Features of SEM-Based Mediation Framework 16.2.1.1 Product of Coefficients Method 16.2.1.2 Difference of Coefficients Method 16.2.1.3 Remarks 16.2.2 Counterfactual-Based Mediation Framework 16.2.2.1 Lewis´ Counterfactual Model 16.2.2.2 Rubin´s Counterfactual Framework 16.2.2.3 Counterfactual-Based Mediation Framework Redefine Causality as a Statistical Methodology Rather than Philosophical Ontology Redefine Causal Direct and Causal Indirect Effects Generalize the Counterfactual Mediation Analysis Allow for the Presence of Independent Variable-Mediator Interactions Add No-Confounding Assumptions to Ensure a Casual Interpretation Final Check with a Sensitivity Analysis 16.2.2.4 The Linking of Counterfactual-Based and SEM-Based Mediation Analyses 16.2.2.5 Typical Features of Counterfactual-Based Mediation Framework 16.3 Mediation Models in Omics Studies 16.3.1 Test Multiple Putative Mediators Simultaneously Based on Permutation (MultiMed) 16.3.2 Reduce High Dimensionality of Mediators Through Regularization or Penalization (HIMA) 16.3.3 Transform High-Dimensional Mediators into Low-Dimensional and Uncorrelated Mediators Using the Spectral Decomposition (... 16.3.4 Remarks 16.4 Specifically Designed Mediation Models in Microbiome Studies 16.4.1 Distance-Based Omnibus Test of Mediation Effect (MedTest) 16.4.1.1 MedTest Method 16.4.1.2 Using Distance Metrics to Reduce High Dimensionality 16.4.1.3 Remarks 16.4.2 Multivariate Omnibus Distance Mediation Analysis (MODIMA) 16.4.2.1 MODIMA Method 16.4.2.2 Permutation Testing of Mediation Effects 16.4.2.3 Remarks 16.4.3 Causal Compositional Mediation Model (CCMM) 16.4.3.1 CCMM Method 16.4.3.2 Hypothesis Testing of Mediation Effects 16.4.3.3 Remarks 16.4.4 Isometric Log-Ratio Transformation for Microbiome Mediation (IsometricLRTMM) 16.4.4.1 IsometricLRTMM Method 16.4.4.2 Inference on the Ilr-Transformed Mediation Effect 16.4.4.3 Remarks 16.4.5 Sparse Microbial Causal Mediation Model (SparseMCMM) 16.4.5.1 Casual Mediation Model Compositional (Log-Ratio Analysis) Model Dirichlet Regression 16.4.5.2 Hypothesis Testing of Microbiome Mediation Effects 16.4.5.3 Remarks 16.4.6 Mediation Analysis for Zero-Inflated Mediators (MedZIM) 16.4.6.1 MedZIM Method 16.4.6.2 Mediation Effect and Direct Effect Under the Counterfactual-Based Framework 16.4.6.3 Remarks 16.4.7 Nonparametric Entropy Mediation (NPEM) 16.4.7.1 NPEM Method 16.4.7.2 Hypothesis Testing of Mediation Using Mutual Information Univariate Entropy Measure Bivariate Entropy Measure 16.4.7.3 Remarks 16.4.8 Some Comments About Current Mediation Models for Microbiome Data Analysis 16.4.8.1 Direction of Mediation Methods in Microbiome Studies 16.4.8.2 Who Are Mediators: Microbial Taxa, Host, or Environment Factors? 16.4.8.3 Modeling Mediation Effects of Microbiome Data Is a Real Challenge 16.4.8.4 Developing Longitudinal Mediation Models for Microbiome Data Analysis Is Difficult 16.4.8.5 Multicollinearity Especially Challenges the Mediation Analysis of Microbiome Data 16.4.8.6 Model Fitting Assumptions and Modeling Issues Need to be Considered 16.4.8.7 Incorporating Multilevel SEM Modeling into Mediation Methods 16.4.8.8 Mediation Analysis Is Not Causation Analysis Yet 16.5 Detecting Causality in Microbiome Studies 16.5.1 Causality as a Philosophic Ontology or Metaphysics 16.5.2 Causality as a Methodology and Specifically a Statistical Theory of Probability 16.5.3 How to Understand Establishing Causality in Microbiome Studies References