دسترسی نامحدود
برای کاربرانی که ثبت نام کرده اند
برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید
در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید
برای کاربرانی که ثبت نام کرده اند
درصورت عدم همخوانی توضیحات با کتاب
از ساعت 7 صبح تا 10 شب
دسته بندی: کامپیوتر ویرایش: نویسندگان: Dominique Perrin. Jean-Eric Pin سری: ناشر: Elsevier سال نشر: 2004 تعداد صفحات: 540 زبان: English فرمت فایل : DJVU (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود) حجم فایل: 4 مگابایت
در صورت تبدیل فایل کتاب Infinite words. Automata, Semigroups, Logic and Games به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.
توجه داشته باشید کتاب کلمات بی نهایت خودکار، نیمه گروه ها، منطق و بازی ها نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.
Cover Title page Preface I. AUTOMATA AND INFINITE WORDS 1. Introduction 2. Words and trees 3. Rational set.. of Infinite words [3 4. Automata [6 5. Büchi automata 6. Deterministic Büchi automata 7. Muller and Rabin auto mata 7.1. Muller automata 7.2. Rabin automata 7.3. Muller automata with a full table 8. Transition automata 9. McNaughton's theorem 10. Computational comp]exity issues 10.1. From ω-rationa] expressions to Büchi automata and back 10.2. From Muller automata to ω-rational expressions 10.3. From Büchi automata to Rabin automata 10.4. From Rabin automata to Muller automata 10.5. From Rabin automata to Büchi automata 10.6. From Streett automata to Büchi automata 10.7. Complexity of algorithms on automata 11. Exercises 11.1. Words and trees 1l,2. Rational sets 11.3. Büchi automata 11.4. Deterministic Büchi automata 11.5. Muller automata 11.6. McNaughton's theorem 12. Notes II. AUTOMATA AND SEMIGROUPS 1. Introduction 2. Ramseyan factorizations and linked pairs 2.1. Ramseyan factorizations 2.2. Linked pairs 2.3. Ultimate classes 2.4. Idempotent linked pairs 3. Recognition by morphism 3,1. Semigroup morphisms 3.2. Morphisms of ordered semigroups 3.3. Congruence and syntactic order 3.4. Residuals 4. Semigroups and infinite products 4.1. ω-semigroups 4.2. Morphisms of ω-semigroups 4.3. Free structures 5. Wilke A]gebras 6. Recognition by morphism of ω-semigroups 7. The two modes of recognition 8. Syntactic congruence 9. Back to McNaughton's theorem 10. Prophetic automata 11. Exercises 11.1. Ramseyan factorizations 11.2. Recognition by morphism 11.3, Wilke algebras 11.4. The two modes of recognition 11.5. Syntactic congruence 11.6. Back to McNaughton's theorem 11.7. Prophetic automata 12. Notes III. AUTOMATA AND TOPOLOGY 1. Introduction 2. Topological spaces 2.1. Countable sets 2.2. General topology 2.3. Metric spaces 2.4. Polish spaces 2.5. Borel sets 3. The space of infinite words 3.1. The topology of A^ω 3.2. Closed sets 3.3. Clopen sets 3.4. The seeond level of the Borel hierarchy 3.5. Compactness 3.6, The Borel hierarchy of A^ω 4. The space of finite or infinite words 5. Borel automata 6. Suslin sets 7. The separation theorem 8. Exercises 8.1. Topological spaces 8.2. The space of infinite words 8.3. The space of finite or infinite words 8.4. Borel automata 9. Notes IV. GAMES AND STRATEGIES 1. Introduction 2. Infinite games 3. Borel games 3.1. Open games 3.2. Π₂-games 3.3. Martin's theorem 4. Games on graphs 4.1. Simple games 4.2. Winning conditions 4.3. Parity games 4.4. Parity automata 4.5. Rational winning strategies 5. Wadge games 5.1. Wadge lemma 5.2. Rational reduction 6. Exercises 6.1. Borel games 6.2. Infinite games 6.3. Games on graphs 7. Notes V. WAGNER HIERARCHY 1. Introduction 2. Ordinals 3. Classes of sets 3.1. Wadge classes 3.2. The boolean hierarchy 3.3. Separated and biseparated union 4. Chains 4.1. Chains in automata 4.2. Chains in ω-semigroups 4.3. Chains in finite ω-semigroups 4.4. Equivalence of the detinitions of chains 4.5. The chain hierarchy 5. Superchains 5.1. Superchains in automata 5.2. Superchains in ω-semigroups 5.3. Superchains in finite ω-semigroups 5.4. Equivalence of the definitions of superchains 5.5. The superchain hierarchy 6. The Wagner hierarchy 6.1. The derived automaton 6.2. The Wagner hierarchy 6.3. Biseparated differences 6.4. The standard representatives 7. Exercises 7.1. Classes of sets 7.2. Chains 7.3. Wagner hierarchy 8. Notes VI. VARIETIES 1. Introduction 2. Varieties of finite or infinite words 2.1. Varieties of ω-semigroups 2.2. Identities 2.3. The varieties theorem 3. Varieties and topology 4. Weak recognition 4.1. Weak recognition by a morphism of ordered semigroups 4.2. Recognition versus weak recognition 4.3. Properties of the strong expansion 5. Extensions of McNaughton's theorem 6. Varieties closed under aperiodic extension 7. Concatenation hierarchies for infinite words 8. Exercises 8.1. Varieties of finite or infinite words 8.2. Varieties and topology 8.3. Weak recognition 8.4. Boolean combinations of deterministic sets 8.5. Varieties closed under aperiodic extension 9. Notes VII. LOCAL PROPERTIES 1. Introduction 2. Weak recognition 3. Local properties of infinite words 3.1. Properties defined by letters 3.2. Prefixes and suffixes of infinite words 3.3. Factors of infinite words 4. Exercises 4.1. Local properties of finite words 4.2. Factors of infinite words 5. Notes VIII. AN EXCURSION INTO LOGIC 1. Introduction 2. The formalism of logic 2.1. Syntax 2.2. Semantics 2.3. Logic on words 3. Monadic second-order logic on words 4. First-order logic of the linear order 4.1. First order and star-free sets 4.2. Logical hierarchy 5. First-order logic of tne successor 5.1. Fraïssé-Ehrenfeueht Games 5.2. Characterization of F₁(S) 6. Temporal logic 6.1. Another cnaracterization of star-free sets 6.2. Star-free sets and temporal logic 7. Restricted temporal logic 8. Exercises 8.1. The formalism of logic 8.2. Monadic second-order logic on words 8.3. First-order logic of the linear order 8.4. First-order logic of the successor 8.5. Temporal logic 9. Notes IX. BI-INFINITE WORDS 1. Introduction 2. Bi-infinite words 3. Determinism 4. Morpnisms 5. Unambiguous automata on bi-infinite words 6. Discrimination 7. Logic on Z 8. Exercises 8.1. Bi-infinite words 8.2. Morphisms 8.3. Discrimination 8.4. Logic on Z 9. Notes X. INFINITE TREES 1. Introduction 2. Finite and infinite trees 3. Tree automata 3.1. Automata on finite trees 3.2. Büchi tree automata 3.3. Muller tree automata 3.4. Rabin basis theorem 4. Tree automata and games 4.1. Automaton and Pathfinder 4.2. Rabin's tree theorem 4.3. A second proof of Rabin's basis theorem 5. Topology 5.1. The topological space of infinite trees 5.2. Suslin sets 5.3. Recognizablc sets 6. Monadic second order logic of two successors 7. Effective algorithms 8. Exercises 9. Notes ANNEX A. FINITE SEMIGROUPS 1. Monoids, scmigroups and semirings 1.1. Definitions 1.2. Congruences 1.3. Structure of finite semigroups 2. Grecn relations 3. Transformation semigroups 4. Semidirect product and wreath product 4.1. Definitions 4.2. Basic decomposition results 5. The wreath product principle 5.1. Sequential functions 5.2. Sets recognized by wreath products 6. Notes ANNEX B. VARIETIES OF FINITE SEMIGROUPS 1. Varieties of algebras 1.1. Birkhoff varieties 1.2. Varieties of finite semigroups 1.3. Profinite algebras 2. The variety theorem 3. Some examples of varieties 4. Star-free sets 4.1. Concatenation hierarchies 4.2. Varieties closed under marked product 5. Local properties of finite words 5.1. Prefixes and suffixes of finite words 5.2. Pactors of finite words 6. Notes References List of Tables List of Figures Index