دسترسی نامحدود
برای کاربرانی که ثبت نام کرده اند
برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید
در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید
برای کاربرانی که ثبت نام کرده اند
درصورت عدم همخوانی توضیحات با کتاب
از ساعت 7 صبح تا 10 شب
ویرایش:
نویسندگان: Albert Williams
سری: River Publishers Series in Energy Engineering and Systems
ISBN (شابک) : 8770226601, 9788770226608
ناشر: River Publishers
سال نشر: 2022
تعداد صفحات: 501
[502]
زبان: English
فرمت فایل : PDF (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود)
حجم فایل: 56 Mb
در صورت تبدیل فایل کتاب Industrial Energy Systems Handbook به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.
توجه داشته باشید کتاب کتاب راهنمای سیستم های انرژی صنعتی نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.
سیستمهای انرژی صنعتی Handbook یک منبع مطالعه تکمیلی برای داوطلبانی است که برنامه حرفهای انرژی صنعتی (CIEP) دارای گواهی انجمن مهندسین انرژی (AEE) را انجام میدهند.
درک نحوه عملکرد سیستم های صنعتی مختلف برای شناسایی فرصت های پس انداز کلیدی است. یک مرور کلی از وضعیت انرژی جهانی در زمان انتشار ارائه شده است که ضرورت بهبود فرآیندهای انرژی بر برای بهینهسازی بیشتر را نشان میدهد.
درک فرصتها برای بهینهسازی یک صنعتی سیستم انرژی با مبانی انرژی، انرژی الکتریکی و انرژی حرارتی و اهمیت سیستم های مدیریت انرژی و ممیزی انرژی صنعتی شروع می شود.
سیستمهای اصلی مصرف کننده انرژی در صنعت شامل بخار، هوای فشرده، موتورها، درایوها، فنها، پمپها، روشنایی، کورهها، سیستمهای تبادل حرارت و سرمایش در مقیاس بزرگ میباشند. و تبرید صنعتی ابزار دقیق و کنترل و همچنین ابزارهای موجود موضوعات کتاب راهنما را کامل می کند.
Industrial Energy Systems Handbook is a supplementary reading resource for candidates undertaking the Association of Energy Engineers (AEE) Certified Industrial Energy Professional (CIEP) program.
Understanding how the various industrial systems work is key to identifying savings opportunities. An overview is given of the global energy situation as at the time of publication which cements the necessity to improve energy intensive processes to become more optimized.
Comprehension of opportunities to optimize an industrial energy system starts with the fundamentals of energy, electrical energy and thermal energy, and the importance of energy management systems and industrial energy audits.
The main energy consuming systems in industry are covered such as steam, compressed air, motors, drives, fans, pumps, lighting, furnaces, heat exchange systems, and large scale cooling and industrial refrigeration. The instrumentation and control as well as toolkits available rounds off the handbook topics.
Cover Half-Title RIVER PUBLISHERS SERIES IN ENERGY ENGINEERING AND SYSTEMS Title Copyrights Contents List of Contributors List of Figures List of Tables Chapter 1 Global Energy Situation on Climate Change 1.1 The Negative Impacts and Forecasts of Climate Change 1.1.1 Sea levels 1.1.2 Ocean currents 1.1.3 Coral reefs 1.1.4 Ocean acidity 1.1.5 Wildlife 1.1.6 Hurricanes 1.1.7 Floods 1.1.8 Fires 1.1.9 Forests 1.1.10 Droughts 1.1.11 Human health 1.1.12 Social cost 1.2 The Positive Global Trends to meet the Goals of the Paris Agreement 1.2.1 Coal 1.2.2 Wind 1.2.3 Solar 1.2.4 Employment 1.2.5 Industrial energy efficiency 1.3 International Protocols and Conventions 1.3.1 Paris agreement 1.3.2 Kyoto protocol Chapter 2 Fundamental Principles of Energy 2.1 Forms of Energy 2.1.1 Definition of energy 2.1.2 Different forms of energy and energy flowimportant to energy audits 2.2 Definition of Energy Efficiency 2.3 Definition of Energy Density 2.4 Units of Energy 2.4.1 Calorie 2.4.2 Joule 2.4.3 Pascal 2.4.4 Ampere 2.4.5 Ampere-hour 2.4.6 Volt-Ampere 2.4.7 kiloVolt-Ampere reactive 2.4.8 Watt 2.4.9 Watt-hour 2.4.10 kiloWatt and gigaWatt Chapter 3Energy Conversion and EfficiencyLouis Lagrange 3.1 Energy Conversion, Electricity and Energy Efficiency 3.1.1 Total energy, useful and not useful energy 3.2 The Four Thermodynamic Laws 3.2.1 Definition and interpretation of thermodynamic law nr 0 3.2.2 Definition and interpretation of thermodynamic law nr 1 3.2.3 Definition and interpretation of thermodynamic law nr 2 3.2.4 Definition and interpretation of thermodynamic law nr 3 3.3 Energy Performance Criteria 3.4 Calculation of Energy Efficiency Performance 3.4.1 High level benchmarking metrics 3.4.2 Energy use index 3.4.3 Energy cost index 3.4.4 Productivity metrics 3.4.5 Energy efficiency rating, seasonal and integrated 3.4.6 System performance metrics 3.4.7 Typical system performance indexes 3.5 Calculation of Point of Use (PoU) costs 3.5.1 Energy conservation and energy conversion (energy flow) 3.5.2 Heat flow and heat loss 3.5.3 Mass- and energy-balance 3.5.4 Energy demand Chapter 4Fundamentals of Electrical EnergyLouis Lagrange 4.1 Electrical Power and Electrical Power Quality 4.2 Electrical Voltage 4.3 Electrical Current 4.4 Electrical Power 4.5 Demand 4.6 Types of Current Flow 4.7 Direct Current 4.8 Batteries 4.9 Alternating Current 4.10 The Different Types of Loads 4.10.1 Electrical circuitry 4.10.2 Resistive loads 4.10.3 Inductive loads 4.10.4 Capacitive loads 4.11 Electrical Power Factor 4.11.1 Lower utility fees 4.11.2 Power factor penalty is eliminated 4.11.3 Increase voltage levels in the electric system and distribution system 4.11.4 Power factor correction in linear loads 4.11.5 Power factor correction in non-linear loads 4.11.6 Passive power factor correction (PFC) 4.11.7 Active power factor correction 4.11.8 Dynamic power factor correction 4.12 Demand Management 4.13 Load Factor 4.14 Load Shifting 4.14.1 Demand response 4.14.2 Dynamic demand 4.15 Load Shedding 4.16 Total Harmonic Distortion (THD) 4.16.1 THD voltage 4.16.2 Harmonic voltage distortions 4.16.3 Harmonic current distortion 4.17 Problems with Harmonics 4.18 Measuring Electrical Energy Consumption 4.18.1 Calculating power, energy and power factor inalternating current circuits 4.18.2 Calculate power, voltage, current andpower factor in AC circuits 4.18.3 Voltage 4.18.4 Current 4.18.5 Power 4.19 Methods to Correct the Power Factor 4.20 Calculating Energy Efficiency forElectrical Equipment 4.21 Uninterruptible Power Supply Chapter 5Fundamentals of Thermal EnergyAlbert Williams 5.1 Types of Thermal Energy: Sensible and Latent 5.2 Concept of Useful Thermal Energy 5.3 Temperature 5.4 Pressure 5.5 Phase Changes 5.5.1 Evaporation 5.5.2 Condensation 5.5.3 Steam 5.5.4 Moist air and humidity 5.6 Psychrometric Charts 5.6.1 Air temperature 5.6.2 Relative humidity 5.6.3 Mean radiant temperature 5.6.4 Air flow movement 5.6.5 Infiltration loads in buildings 5.7 Calculating Thermal Energy 5.7.1 Heat loss calculations 5.8 Energy Efficiency Measures in Thermal Processes Chapter 6Energy Management Systems andIndustrial Energy AuditsAlbert Williams1 & Yolanda de Lange1 6.1 Energy Management Systems (EnMS) 6.1.1 Overview 6.1.2 Energy performance indicators 6.1.3 Calculation of energy efficiency performance 6.1.4 High level benchmarking metrics 6.2 Industrial Energy Audits 6.2.1 The types of energy audits 6.2.2 The energy audit process Chapter 7Instrumentation and ControlAlbert Williams 7.1 The Need for Automated Control 7.2 Control Components 7.2.1 Switches 7.2.2 Sensors 7.2.3 Transducers 7.2.4 Controllers 7.2.5 Control loops 7.2.6 Control devices 7.3 Control Modes 7.3.1 On/Off control 7.3.2 Floating control 7.3.3 Proportional only control (P) 7.3.4 Proportional-plus-integral control (PI) 7.3.5 Proportional-integral-derivative control (PID) 7.4 Sensor Types 7.4.1 Thermostats 7.4.2 Electric meter 7.4.3 Smoke sensors/detectors 7.4.4 Light sensors 7.4.5 Occupancy sensors 7.4.6 Carbon dioxide sensors 7.4.7 Carbon monoxide sensors 7.5 The Principles of Efficiency with Control andControl Applications 7.5.1 Efficiency through control 7.5.2 Efficiency through control applications Chapter 8Energy Investigation Support ToolsAlbert Williams 8.1 Measurement of Power 8.2 Measurement of Temperature 8.3 Measurement of Pressure 8.4 Measurement of Humidity 8.5 Measurement of Heat Capacity and Heat Storage 8.6 Combustion Measurement 8.7 Measurements of Air Velocity 8.8 Measurements of Flow 8.9 Measurements of Compressed Air Systems 8.9.1 Compressed air flow measurements 8.9.2 Leak detection in compressed air system Chapter 9Fuels, Furnaces, and Fired EquipmentAlbert Williams 9.1 Fuel Fired Systems 9.2 Fuels 9.2.1 Properties of solid fuels 9.2.2 Properties of liquid fuels (Oil) 9.2.1 Properties of gaseous fuels 9.3 Combustion 9.3.1 Combustion of carbon 9.3.2 Combustion air requirement 9.4 Optimizing Combustion Conditions 9.5 Fuel Fired Equipment and Applications 9.5.1 Furnaces 9.5.2 Dryers 9.5.3 Kilns 9.6 Flue Gas and Other Losses in Process Furnaces, Dryers and Kilns 9.7 Burners 9.7.1 Liquid fuel combustion 9.7.2 Pressure jet burners 9.7.3 Rotary cup burners 9.7.4 Air blast burners 9.7.5 Common problems in burners 9.8 Thermal Efficiencies 9.9 Air Pollution Control - Process and Equipment 9.9.1 Greenhouse gas effect 9.9.2 Acid rain 9.9.3 Ground level ozone 9.9.4 Reduction of pollutant emissions fromcombustion process 9.9.5 Energy efficiency improvements 9.9.6 Refinement to the combustion process 9.9.7 Flue gas treatment 9.9.8 Fuel switching 9.10 Energy Efficiency Measures 9.10.1 Maintain proper burner adjustment 9.10.2 Check excess air and combustibles in the flue gas 9.10.3 Keep heat exchange surfaces clean 9.10.4 Replace/Repair missing and damaged insulation 9.10.5 Check furnace pressure regularly 9.10.6 Schedule production to operate furnaces at ornear maximum output 9.10.7 Replace damaged furnace doors or covers 9.10.8 Install adequate monitoring instrumentation 9.10.9 Recover heat from equipment cooling water 9.10.10 Install a heat exchanger in the flue gas outlet Chapter 10Heat Exchange SystemsAlbert Williams 10.1 Concepts of Conduction, Convection and Radiation 10.1.1 Conduction 10.1.2 Convection 10.1.3 Thermal radiation 10.2 Specific Heat Capacity 10.3 Insulation 10.3.1 Heat loss through a wall 10.3.2 Heat loss from a pipe 10.3.3 Heat loss from an industrial freezer 10.3.4 Insulating materials 10.3.5 Protective coverings and finishes 10.3.6 Accessories 10.3.7 Insulation energy efficiency measures 10.3.8 Vapor loss from open processing tanks 10.4 Heat Recovery with Heat Exchangers 10.4.1 Shell and tube 10.4.3 Heat wheel 10.4.4 Heat pipes 10.4.5 Run around system 10.4.6 Plate or Baffle type heat exchanger 10.4.7 Heat pumps 10.4.8 Waste heat boilers 10.4.9 Recuperators 10.4.10 Heat recovery ventilation systems 10.4.11 Mechanical and natural ventilation Chapter 11Steam SystemsAlbert Williams 11.1 Generation 11.1.1 Steam 11.1.2 Sensible heat and latent heat 11.1.3 Steam quality 11.1.4 Superheated steam 11.1.5 Example of the effects of increasing surface area 11.1.7 Combustion losses 11.1.8 Blowdown losses 11.1.9 Feedwater treatment 11.1.10 Condensate tanks 11.1.11 Flash tanks 11.1.12 Flash steam heat recovery 11.2 Distribution 11.2.1 Condensate return 11.2.2 Steam leaks 11.2.3 Insulation 11.2.4 Steam pressure 11.2.5 Steam pipes 11.2.6 Heat transfer from steam 11.2.7 Steam traps 11.2.8 Routine maintenance of traps 11.3 End-Use 11.4 Energy Efficiency Measures 11.4.1 Boiler house – Operation opportunities 11.4.2 Boiler house – Maintenance opportunities 11.4.3 Boiler house – Retrofit opportunities 11.4.4 Steam distribution system opportunities 11.4.5 End-use equipment opportunities Chapter 12Motors and DrivesAlbert Williams1 & Eustace Njeru2 12.1 Electric Motor Types 12.1.1 Direct-Current motors (DC) 12.1.2 Synchronous motors 12.1.3 Induction motors 12.2 Motor Nameplate Data 12.2.1 kW or HP 12.2.2 Service factor 12.2.3 Efficiency 12.2.4 Amps 12.2.5 Volts 12.2.6 Slip 12.2.7 RPM motor speed 12.2.8 Motor pole 12.2.9 Hertz 12.2.10 Duty 12.2.11 Bearings 12.2.12 Temperature 12.3 Torque 12.4 Power 12.5 Motor Losses 12.5.1 Core loss 12.5.2 Stator and rotor resistance (I2R) Loss 12.5.3 Friction and windage loss 12.5.4 Stray load loss 12.6 Motor Efficiency 12.6.1 Energy efficient motors 12.7 Motor Loads 12.8 Motor Rewinding 12.9 Motor Protection 12.9.1 Overcurrent protection 12.9.2 Overload protection 12.9.3 Other protection 12.10 Electric Motor Standards Compared to Actual Measurement 12.11 Energy Efficiency Measures 12.11.1 Motor load scheduling 12.11.2 Motor drive maintenance and alignment 12.11.3 Motor power factor correction 12.11.4 Balance motor phase voltages 12.11.5 Energy efficient motors 12.11.6 Cost implications of motor replacement versus maintenance Chapter 13Fan SystemsAlbert Williams 13.1 Fan Types 13.1.1 Centrifugal fans 13.1.2 Axial fans 13.2 Fan Performance 13.2.1 Airflow measurement 13.2.2 Pressure measurements 13.2.3 Fan power requirement 13.2.4 Fan performance curves 13.2.5 Density consideration 13.2.6 Fan laws 13.3 Flow Control 13.3.1 System effect factors 13.4 Energy Efficiency Opportunities 13.4.1 Maintenance opportunities 13.4.2 Low cost opportunities 13.4.3 Retrofit opportunities Chapter 14Pump SystemsAlbert Williams 14.1 Pump Types 14.1.1 Centrifugal pumps 14.1.2 Positive Displacement Pumps 14.2 Pump System Fluid Relationships 14.2.1 Friction head 14.2.2 Velocity head 14.2.3 Static head 14.3 Pump Performance Characteristics 14.3.1 Pump and system performance curves 14.3.2 Pump power requirements 14.3.3 Multiple pump systems 14.3.4 Cavitation and NPSH 14.4 Pump Maintenance 14.4.1 Packing glands 14.4.2 Mechanical seals 14.5 Energy Efficiency Measures 14.5.1 Housekeeping - Maintenance 14.5.2 Retrofit opportunities Chapter 15Compressed Air SystemsAlbert Williams 15.1 Supply Side 15.1.1 Specific power for various compressor types 15.1.2 Positive displacement compressors 15.1.3 Dynamic compressors 15.1.4 Compressor lubrication 15.1.5 Inlet air temperature 15.1.6 Inlet air pressure 15.1.7 Compressor control 15.1.8 Individual compressor control 15.1.9 Multiple compressor control 15.1.10 Sizing 15.1.11 Compressor scheduling 15.1.12 Heat recovery 15.1.13 Maintenance 15.1.14 Compressor package 15.1.15 Supply side energy efficiency measures 15.2 Distribution and Treatment 15.2.1 Distribution main 15.2.2 Condensate drain traps 15.2.3 Air quality 15.2.4 Condensate 15.2.5 Distribution piping 15.2.6 Desiccant dryers 15.2.7 Heat of compression dryers 15.2.8 Deliquescent (Absorption) dryers 15.2.9 Refrigeration dryers 15.2.10 Dryer installation 15.2.11 Dryer sizing 15.2.12 Filters 15.2.13 Storage 15.2.14 System isolation 15.2.15 Distribution and treatment energy efficiency measures 15.3 Demand Side 15.3.1 Leakages 15.3.2 Inappropriate use 15.3.3 System operating pressure 15.3.4 Artificial demand 15.3.5 Perceived high pressure demands 15.3.6 High volume intermittent demand events 15.3.7 Demand side energy efficiency measures 15.4 Compressed Air Systems Assessments 15.4.1 Leakage assessment 15.4.2 End users assessment 15.4.3 Distribution assessment 15.4.4 Air treatment assessment 15.4.5 Compressor room assessment 15.4.6 Demand profile 15.4.7 Pressure profile Chapter 16Large Scale Cooling and Industrial Refrigeration SystemsAlbert Williams 16.1 Refrigerants 16.1.1 Desirable refrigerant characteristics 16.2 Vapor Compression Refrigeration Cycle 16.2.2 Practical considerations for vapor compression refrigeration systems 16.3 Absorption Cycle 16.4 Refrigeration System Components 16.4.1 Refrigerant compressors 16.4.2 Evaporators 16.4.3 Throttling devices 16.4.4 Condensers 16.4.5 Heat rejection equipment 16.5 Industrial Refrigeration Applications in Food Industry 16.5.1 Still air or blast freezing 16.5.2 Cryogenic freezing 16.5.3 Plate freezing 16.5.4 Scraped surface freezing 16.6 Energy Efficiency Ratios 16.7 Sensible and Latent Heat 16.7.1 Sensible heat 16.7.2 Latent heat 16.8 Energy Efficiency Measures for CR Systems List of Abbreviations Definitions Resources Index About the Author Back Cover