ورود به حساب

نام کاربری گذرواژه

گذرواژه را فراموش کردید؟ کلیک کنید

حساب کاربری ندارید؟ ساخت حساب

ساخت حساب کاربری

نام نام کاربری ایمیل شماره موبایل گذرواژه

برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید


09117307688
09117179751

در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید

دسترسی نامحدود

برای کاربرانی که ثبت نام کرده اند

ضمانت بازگشت وجه

درصورت عدم همخوانی توضیحات با کتاب

پشتیبانی

از ساعت 7 صبح تا 10 شب

دانلود کتاب Industrial Design of Experiments: A Case Study Approach for Design and Process Optimization

دانلود کتاب طراحی صنعتی آزمایش‌ها: رویکرد مطالعه موردی برای طراحی و بهینه‌سازی فرآیند

Industrial Design of Experiments: A Case Study Approach for Design and Process Optimization

مشخصات کتاب

Industrial Design of Experiments: A Case Study Approach for Design and Process Optimization

ویرایش:  
نویسندگان:   
سری:  
ISBN (شابک) : 3030862666, 9783030862664 
ناشر: Springer 
سال نشر: 2022 
تعداد صفحات: 399
[391] 
زبان: English 
فرمت فایل : PDF (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود) 
حجم فایل: 12 Mb 

قیمت کتاب (تومان) : 36,000



ثبت امتیاز به این کتاب

میانگین امتیاز به این کتاب :
       تعداد امتیاز دهندگان : 7


در صورت تبدیل فایل کتاب Industrial Design of Experiments: A Case Study Approach for Design and Process Optimization به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.

توجه داشته باشید کتاب طراحی صنعتی آزمایش‌ها: رویکرد مطالعه موردی برای طراحی و بهینه‌سازی فرآیند نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.


توضیحاتی در مورد کتاب طراحی صنعتی آزمایش‌ها: رویکرد مطالعه موردی برای طراحی و بهینه‌سازی فرآیند

این کتاب درسی ابزارها، تکنیک‌ها و نمونه‌های صنعتی مورد نیاز برای اجرای موفقیت‌آمیز طراحی آزمایش‌ها (DoE) در کاربردهای مهندسی و ساخت را ارائه می‌دهد. این شامل یک تجزیه و تحلیل مهندسی سطح بالا از مسائل کلیدی در طراحی، توسعه، و تجزیه و تحلیل موفقیت آمیز DoE صنعتی است که بر جنبه طراحی آزمایش و سپس بر تفسیر نتایج تمرکز دارد. تجزیه و تحلیل آماری بدون اشتقاق فرمول نشان داده می شود و خوانندگان به معنای هر اصطلاح در تجزیه و تحلیل آماری هدایت می شوند. 
طراحی صنعتی آزمایش ها: A رویکرد مطالعه موردی برای طراحی و بهینه‌سازی فرآیند برای دوره‌های DoE در سطح فارغ‌التحصیل، طراحی مهندسی، و دوره‌های آماری عمومی، و همچنین کلاس‌های آموزش حرفه‌ای و گواهینامه طراحی شده است. مهندسان و مدیرانی که در توسعه محصول چند رشته‌ای کار می‌کنند، آن را مرجع ارزشمندی می‌دانند که تمام اطلاعات مورد نیاز برای انجام یک DoE موفق را فراهم می‌کند.

توضیحاتی درمورد کتاب به خارجی

This textbook provides the tools, techniques, and industry examples needed for the successful implementation of design of experiments (DoE) in engineering and manufacturing applications. It contains a high-level engineering analysis of key issues in the design, development, and successful analysis of industrial DoE, focusing on the design aspect of the experiment and then on interpreting the results. Statistical analysis is shown without formula derivation, and readers are directed as to the meaning of each term in the statistical analysis. 
Industrial Design of Experiments: A Case Study Approach for Design and Process Optimization is designed for graduate-level DoE, engineering design, and general statistical courses, as well as professional education and certification classes. Practicing engineers and managers working in multidisciplinary product development will find it to be an invaluable reference that provides all the information needed to accomplish a successful DoE. 


فهرست مطالب

Other Books by the Author
Preface
	About the Book´s Organization
Acknowledgments
Contents
List of Figures
List of Tables
About the Author
Chapter 1: Data Presentations, Statistical Distributions, Quality Tools, and Relationship to DoE
	1.1 Graphical Presentation of Data
	1.2 Probability Distributions and Their Use in Modern Quality Systems
		1.2.1 The Binomial Distribution
			Example of Calculating Binomial Distribution Function
			Examples of Using the Binomial Distribution
		1.2.2 The Poisson Distribution
			Examples of Using the Poisson Distribution
		1.2.3 Continuous Distributions and Reliability
			Weibull Distribution Example
		1.2.4 The Use of the Standard Normal Distribution in Quality Methods
			Examples of Using SND for Determining Defect Rates
	1.3 Six Sigma and Its Relationship with DoE
		1.3.1 Converting Defect Rate to Cp and Sigma Design with No Mean Shift from Nominal
		1.3.2 The Implied Mean Shift to Nominal of Cp and Six Sigma
		1.3.3 Process Capability Studies for Quality Enhancement
		1.3.4 Process Capability for Prototype and Early Production Parts
		1.3.5 Corrective Action for Process Capability Problems
		1.3.6 DoE Effects on Six Sigma
	1.4 Control Charts and Their Relationship with DoE
		1.4.1 Selection of Control Charts
		1.4.2 Variable Control Charts
		1.4.3 Relationship of Control Limits to Specification Limits
			and R Variable Control Chart Calculation Example
		1.4.4 Variable Control Chart Usage Guidelines
			Example of Variable Control Charts´ Relationship to Process Capability
			Variable Control Chart Solution
		1.4.5 Control Charting and Process Capability for Low-Volume Production
			Examples of Moving Range Calculations
		1.4.6 Attribute Control Charts
			Example of Attribute Control Chart Calculations and Relationship with Process Capability
			Example of Variable Control Chart Solution
		1.4.7 Use of Control Charts in Factories with High Process Capability
		1.4.8 DoE Effects on Control Charts
	1.5 Conclusions
	References
	Additional Reading Material
Chapter 2: Samples and Populations: Statistical Tests for Significance of Mean and Variability
	2.1 Sample and Population Statistics
		2.1.1 Standard Deviation Estimation Methodologies and Data Collection
		2.1.2 Measurement System Error (GR&R) and Its Impact on Statistical Measurements
			GR&R Study Example
			Answer of GR&R Sample Study
	2.2 Tests for Sample and Population
	2.3 Tests for Means
		2.3.1 z-Test for Population Means
		2.3.2 The Wilcoxon Test for Non-normal Population Mean Test
			Wilcoxon Test Example
		2.3.3 t-Tests for Sample Means: Single Sample
		2.3.4 t-Tests for Comparing Two Sample Means with Unknown Variance
		2.3.5 d- or Paired t-Test
		2.3.6 Confidence Interval (CI) of the Mean
		2.3.7 Determination of Sample Size Based on Error
			Sample Size for Specified Error Example
	2.4 Tests for Variability
		2.4.1 X2 (Chi-Square) Significance Test
			X2 (Chi-Square) Test Example
		2.4.2 X2 Goodness of Fit Test and Checking for Normality
		2.4.3 F-Test
	2.5 Conclusions
	References
	Additional Reading Material
Chapter 3: Regression, Treatments, DoE Design, and Modelling Tools
	3.1 Regression Analysis
		3.1.1 Least Squares Regression
		3.1.2 Linear Regression Analysis Using Model Coefficients Estimates
			Linear Regression Analysis Example
		3.1.3 Linear Regression Analysis Using ANOVA
			Linear Regression Analysis Example Using ANOVA
		3.1.4 R2 and Accuracy of Model Estimate
		3.1.5 Using Linear Regression for Normality Checking
	3.2 Treatment Design and Analysis
		3.2.1 Treatment Design and Analysis Example
		3.2.2 Significance Determination Techniques and p% Contribution
	3.3 Full Factorial DoE Design and Analysis
		3.3.1 Limiting DoE Scope with Design Space and Process Map
		3.3.2 Full Factorial DoE Design Analysis Using Interactions
	3.4 Full Factorial DoE Design and Analysis Case Study: Green Electronics Manufacturing
		3.4.1 Summary of Phase I Green Electronics DoE Case Study
		3.4.2 Phase II of Green Electronics DoE Case Study
		3.4.3 Analysis of Phase II DoE
	3.5 Conclusions
	Additional Reading Material
Chapter 4: Two-Level Factorial Design and Analysis Techniques
	4.1 DoE Definitions, Expectations, and Processes
		4.1.1 DoE Lifecycle Process
		4.1.2 DoE Project Timing and Error Source
	4.2 Two-Level Factorial DoE Design
		4.2.1 Commonly Used Two-Level Orthogonal Arrays
		4.2.2 Types of Uses for Two-Level OA
		4.2.3 Interaction, Confounding, and Interconnecting Graphs
	4.3 Two-Level OA Analysis and Model Reductions
	4.4 Two-Level DoE Case Studies
		4.4.1 Full Factorial L8 Case Study, Hipot DoE: Selecting Best Alternative Among Equally Performing Designs
		4.4.2 Partial Factorial L8 Case Study, Underfill Voids DoE: Selecting Process Parameters for Zero Defects
		4.4.3 Partial Factorial L16 Example Case Study, Rivet Design DoE: Selecting Part Dimension Design for Best Product Performance
		4.4.4 Partial Factorial L32 Case Study, APOS for Robotics DoE: Selecting Process Parameters for Multiple Adjustment Production...
	4.5 Conclusions
	Additional Reading Material
Chapter 5: Three-Level Factorial Design and Analysis Techniques
	5.1 Three-Level Factorial Design
		5.1.1 Commonly Used Three-Level Orthogonal Arrays
			Use of Three-Level OA: Full and Partial Factorial and Screening Modes
		5.1.2 Use of Three- Versus Two-Level DoE
	5.2 Three-Level DoE Analysis and Model Reductions
	5.3 Three-Level DoE Case Studies
		5.3.1 Screening Design L9 Case Study: Bonding I DoE
		5.3.2 Screening Design L9 Case Study: Zero-Defect Mixed Soldering DoE
		5.3.3 Partial Factorial DoE L27 Case Study: Green Electronics Phase I DoE
		5.3.4 Screening Design Software L27 Case Study: Minimizing Half-Adder Chip Delay Time DoE
	5.4 Conclusions
	Additional Reading Material
Chapter 6: DoE Error Handling, Significance, and Goal Setting
	6.1 DoE Error Handling Techniques for Significance Testing
		6.1.1 Regression Equation and Predicted Outcome with Interaction
		6.1.2 DoE Error Handling Types
		6.1.3 Error Handling and Significance Technique L8 Case Study: Plastics Injection Molding DoE
		6.1.4 Error Handling and Significance for Single Repetition DoE Analysis
		6.1.5 Error Handling and Significance for Multiple Replication DoE Analysis
		6.1.6 Error Handling and Significance for Multiple CenterPoint Replications
		6.1.7 Error Handling and Significance for Some Experiment Outcome Replications
	6.2 Project Goal Setting and Design Space
		6.2.1 Types of DoE Project Goals
		6.2.2 Design Space and Level Selection
	6.3 Experiment Blocking (Dividing)
	6.4 Conclusions
	Additional Reading Material
Chapter 7: DoE Reduction Using Confounding and Professional Experience
	7.1 Design Resolution and Confounding
		7.1.1 Techniques for Managing Confounding
	7.2 Interactions and Confounding for L8 for Reduced Experiments
		7.2.1 L8 Half Fraction Interaction and Confounding
		7.2.2 L8 Partial Factorial Design and Confounding
		7.2.3 L8 Screening Design Confounding
		7.2.4 L8 Factor Conversion Tables for Labeling Numeric and Alphabetic Factors
	7.3 Interactions and Confounding for L16 for Reduced Experiments
		7.3.1 L16 Half Fraction Interaction and Confounding
		7.3.2 Interactions and Confounding in L16 Rivet DoE Case Study
		7.3.3 L16 Partial Factorial Design and Confounding
		7.3.4 L16 Partial Factorial Design and Confounding with DoE Interaction Matrix Method
		7.3.5 Interaction Matrix L32 Case Study: Solder Wave DoE Design
		7.3.6 Resolving Confounded Interactions
		7.3.7 L16 Partial Factorial Design and Confounding for Eight or More Factors
	7.4 Interaction and Confounding for Large OA
	7.5 Conclusions
	Additional Reading Material
Chapter 8: Multiple-Level Factorial Design and DoE Sequencing Techniques
	8.1 Multi-level OA Arrangements
		8.1.1 Multi-level Arrangement DoE L8 Case Study: Machining I Pin Fin Heat Sinks
		8.1.2 Multi-level Arrangement DoE L16 Case Study: Machining II Stencil Forming
	8.2 DoE Sequencing Techniques
		8.2.1 Foldover Sequencing Techniques: Folding on One Factor
		8.2.2 Foldover Sequencing Techniques: Folding on All Factors
		8.2.3 DoE Sequencing Technique Case Study: Printer Design DoE
	8.3 Non-interacting Orthogonal Array Use in DoE
		8.3.1 Non-interacting OA Case Study I: L18 Painting DoE
		8.3.2 Non-interacting OA Case Study II: L36 Air Knife DoE
	8.4 Conclusions
	Additional Reading Material
Chapter 9: Variability Reduction Techniques and Combining with Mean Analysis
	9.1 Controlled and Noise Factors in DoE
	9.2 Variability Reduction Definitions and Analysis
	9.3 Balancing Mean and Variability Outcomes
	9.4 Conclusions
		9.4.1 Controlled and Noise Factors in DoE
			Reducing Noise Factor Repetitions
		9.4.2 Variability Reduction Definitions and Analysis
			Mean and Variability Analysis L8 Case Study I, Larger Is Better: Bonding II DoE of Neoprene to Steel
			Average and Variability Analysis L18 Case Study II, Smaller Is Better: Painting DoE
			Average and Variability Analysis L9 Case Study III, Target Is Best: Stencil Screening II DoE
		9.4.3 Balancing Mean and Variability Outcomes
			Balancing Mean and Variability Gold Plating Example
		9.4.4 Conclusions
	Additional Reading Material
Chapter 10: Strategies for Multiple Outcome Analysis and Summary of DoE Case Studies and Techniques
	10.1 Summary of Previous Chapters
	10.2 Combining Multiple Desired Outcomes with Mean and Variability Analysis
		10.2.1 Interaction Matrix L32 Case Study: Solder Wave DoE Analysis
	10.3 Summary of DoE Case Studies and Techniques
		10.3.1 DoE Case Studies List by OA Size for Two and Three Levels
		10.3.2 DoE Techniques Used and Demonstrated in Chapters and Case Studies
	10.4 Conclusions
Index




نظرات کاربران