دسترسی نامحدود
برای کاربرانی که ثبت نام کرده اند
برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید
در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید
برای کاربرانی که ثبت نام کرده اند
درصورت عدم همخوانی توضیحات با کتاب
از ساعت 7 صبح تا 10 شب
ویرایش: نویسندگان: S.M. Sapuan Sapuan, M.N.F. Norrrahim, R.A. Ilyas سری: Woodhead Publishing Series in Composites Science and Engineering ISBN (شابک) : 0323899099, 9780323899093 ناشر: Woodhead Publishing سال نشر: 2022 تعداد صفحات: 546 [550] زبان: English فرمت فایل : PDF (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود) حجم فایل: 36 Mb
در صورت ایرانی بودن نویسنده امکان دانلود وجود ندارد و مبلغ عودت داده خواهد شد
در صورت تبدیل فایل کتاب Industrial Applications of Nanocellulose and Its Nanocomposites به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.
توجه داشته باشید کتاب کاربردهای صنعتی نانوسلولز و نانوکامپوزیت های آن نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.
نانوسلولز یک ماده همه کاره است که مورد توجه دانشمندانی قرار گرفته است که در طیف وسیعی از زمینههای کاربردی کار میکنند، مانند خودروسازی، کامپوزیتها، جاذبها، رنگها، پوششها، ایمپلنتهای پزشکی، الکترونیک، لوازم آرایشی، خمیر کاغذ و کاغذ، مهندسی بافت، پزشکی، بستهبندی و آئروژلها.
کاربردهای صنعتی نانوسلولز و نانوکامپوزیتهای آنیک بررسی گسترده و بهروز از این موضوع ارائه میکند. زمینه تحقیقاتی سریع این فصل ها طیف گسترده ای از جنبه ها، از جمله سنتز، اصلاح سطح، و بهبود خواص به سمت برنامه های هدف را پوشش می دهند. اهداف اصلی این کتاب، انعکاس پیشرفتهای اخیر در طراحی و ساخت نانوسلولز پیشرفته و بحث در مورد الزامات مهم برای هر کاربرد، و همچنین چالشهایی است که ممکن است با آن مواجه شود. این کتاب همچنین شامل مروری بر دیدگاههای اقتصادی کنونی و مسائل ایمنی، و همچنین جهتگیریهای آتی برای مواد مبتنی بر نانوسلولز است.
این کتاب بهعنوان منبع مرجع ارزشمندی برای دانشگاهی خواهد بود. و محققان صنعتی، شیمیدانان محیط زیست، نانوتکنولوژیست ها، مهندسان شیمی، شیمیدانان پلیمر، دانشمندان مواد و همه کسانی که در صنایع تولیدی کار می کنند.
Nanocellulose is a versatile material that has received much attention from scientists working in a broad range of application fields, such as automotive, composites, adsorbents, paints, coatings, medical implants, electronics, cosmetics, pulp and paper, tissue engineering, medical, packaging, and aerogels.
Industrial Applications of Nanocellulose and Its Nanocompositesprovides an extensive, up-to-date review of this fast-moving research field. The chapters cover a wide range of aspects, including synthesis, surface modification, and improvement of properties toward target applications. The main objectives of the book are to reflect on recent advancements in the design and fabrication of advanced nanocellulose and discuss important requirements for each application, as well as the challenges that might be faced. The book also includes an overview of the current economic perspectives and safety issues, as well as future directions for nanocellulose-based materials.
It will serve as a valuable reference resource for academic and industrial researchers, environmental chemists, nanotechnologists, chemical engineers, polymer chemists, materials scientists, and all those working in the manufacturing industries.
Front Cover Industrial Applications of Nanocellulose and Its Nanocomposites Copyright Contents Contributors Editors‘ biographies Preface Chapter 1 Introduction to nanocellulose production from biological waste 1.1 Introduction 1.2 Types of nanocellulose 1.3 Properties of nanocellulose 1.4 Pretreatments of natural fibers 1.5 Nanocellulose preparation 1.6 Nanocellulose from biological waste 1.6.1 Ginger 1.6.2 Water hyacinth 1.6.3 Kenaf 1.6.4 Sugarcane 1.6.5 Sugar palm 1.7 Applications of nanocellulose 1.8 Conclusions Acknowledgments References Chapter 2 Economic insights into the production of cellulose nanofibrils from oil palm biomass 2.1 Introduction 2.2 Materials and method 2.2.1 Materials 2.2.2 SHS and KOH pretreatments for hemicellulose removal 2.2.3 Mechanical fibrillation using wet disk milling 2.2.4 Characterization analysis 2.2.5 Economic analysis 2.3 Results and discussion 2.3.1 Pulps properties produced from OPMF 2.3.2 CNF properties produced using wet disk milling 2.3.3 Mass balance of CNF production by superheated steam—Wet disk milling (SHS-WDM) and potassium hydroxide—Wet disk ... 2.3.4 Economic evaluation of CNF production by superheated steam—Wet disk milling (SHS-WDM) and potassium hydroxide—W ... 2.4 Conclusions References Chapter 3 Nanocellulose: Sustainable biomaterial for developing novel adhesives and composites 3.1 Introduction 3.2 Lignocellulosic biomaterials 3.2.1 Cellulose 3.2.2 Lignin 3.2.3 Hemicellulose 3.2.4 Others 3.3 Bionanomaterials 3.3.1 Nanocellulose 3.3.2 Nanolignin 3.3.3 Nanohemicellulose 3.4 Cellulose-based micro/nanomaterials 3.4.1 NFC 3.4.2 CNC 3.4.3 BC 3.5 Nanocellulose-reinforced adhesives 3.5.1 Thermosetting resins 3.5.2 Thermoplastic resins 3.5.3 Bioresins 3.6 Nanocellulose-reinforced composites 3.6.1 Biocomposites (wood-based composites) 3.6.1.1 Particle-based wood composites Particleboard Oriented strand board (OSB) 3.6.1.2 Fiber-based wood composites Medium-density fiberboard (MDF) 3.6.1.3 Veneer-based wood composites Plywood Laminated veneer lumber (LVL) Parallel-strand lumber (PSL) Glued-laminated timber (glulam) 3.6.2 Polymer composites/nanocomposites 3.6.2.1 Metal-based nanocomposites 3.6.2.2 Metal oxide and other inorganic-based nanocomposites 3.6.2.3 Nanocarbon-based nanocomposites 3.7 Conclusions and future perspectives Acknowledgments References Chapter 4 Nanocellulose-based aerogels for various engineering applications 4.1 Introduction 4.2 Polymer aerogels—Definition and applications 4.3 Natural polymer-based aerogels and cellulose-based aerogels 4.4 Cellulose- and nanocellulose-based aerogels 4.5 Applications of nanocellulose-based aerogels 4.5.1 Cellulose nanocrystals-based aerogels 4.5.2 Cellulose nanofibers-based aerogels 4.6 Conclusions Acknowledgments References Chapter 5 Nanocellulose: Chemistry, preparation, and applications in the food industry 5.1 Introduction 5.2 Chemistry of cellulose and nanocellulose 5.2.1 Structure of cellulose 5.2.2 Crystalline cellulose 5.2.3 Nanocellulose 5.2.3.1 History 5.2.3.2 Isolation of nanocellulose Cellulose nanofibrils Cellulose nanocrystals Bacterial nanocellulose 5.3 Applications 5.3.1 Food industry application of nanocellulose 5.3.1.1 As an emulsifying and stabilizing agent 5.3.1.2 As a dietary fiber 5.3.1.3 Packaging 5.3.2 Safety of nanocellulose in food 5.4 Conclusions References Chapter 6 Nanocellulose nanocomposites in coating materials 6.1 Introduction 6.2 Surface modification of nanocellulose coating with silane 6.3 Types of coating of modified nanocellulose 6.3.1 Glass and aluminum as substrates 6.3.2 Coating of modified nanocellulose on steel as substrates 6.4 The properties of nanocellulose nanocomposite in coating materials 6.4.1 Mechanical resistance properties 6.4.1.1 Tensile strength 6.4.1.2 Impact strength 6.4.1.3 Abrasion resistance 6.4.2 Air resistance of nanocellulose nanocomposite 6.4.3 Water absorption properties of nanocellulose nanocomposite 6.4.4 Corrosion of the composite coatings 6.4.5 Crack resistance of nanocellulose nanocomposites 6.4.6 Polarized optical microscopy 6.4.7 Water uptake and permeability 6.5 Applications of nanocellulose nanocomposite in coating materials 6.6 Conclusions References Chapter 7 Nanocellulose as an adsorbent for heavy metals 7.1 Introduction 7.2 Heavy metals as chemical contaminants 7.3 Removal of heavy metals by adsorption 7.4 Properties of nanocellulose as an adsorbent 7.5 Adsorption of heavy metals with nanocellulose 7.6 Challenges and future direction References Chapter 8 Nanocellulose in sensors 8.1 Introduction 8.1.1 Sensor in industry 8.2 Applications of nanocellulose in sensors 8.2.1 Gas sensor 8.2.2 Chemical sensor 8.2.2.1 Overview of chemical sensor 8.2.2.2 Type of chemical sensor 8.2.2.3 Metal oxide, bimetal, bimetal oxide chemical sensor 8.2.2.4 Nanocellulose chemical sensor 8.2.3 Strain sensor 8.2.3.1 Nanocellulose strain sensor 8.2.4 Biosensor 8.2.4.1 Optical biosensor 8.2.4.2 Label-free optical biosensor 8.2.4.3 Nanocellulose-based in label-free optical biosensor 8.2.4.4 Label-driven optical biosensors 8.2.4.5 Nanocellulose-based fluorescent biosensors 8.2.4.6 Nanocellulose-based colorimetric biosensors 8.2.4.7 Nanocellulose-based electrical biosensors 8.3 Challenges derived from the use of nanocellulose in sensors 8.4 Conclusions References Chapter 9 An overview of cellulose nanofiber physicochemical characterizations and biological studies in relation to nanosa... 9.1 Introduction 9.2 Physicochemical properties of CNF suspension 9.3 Potential applications of CNF in industry and consumer products 9.4 Biological safety studies of CNF using a cellular test system 9.5 Biological safety studies of CNF using a mammalian test system 9.6 Biological testing of CNF suspension using an aquatic test system 9.7 Conclusions Acknowledgments References Chapter 10 Nanocellulose hydrogels 10.1 Introduction 10.2 Production and properties of nanocellulose hydrogels 10.1 CNC hydrogels 10.2 NFC hydrogels 10.3 Hydrogels using nanocellulose as reinforcing agents 10.4 Main potential applications of nanocellulose hydrogels 10.1 Biomedicine 10.2 Food 10.3 Agriculture 10.4 Cosmetics 10.5 Final considerations Acknowledgments References Chapter 11 Nanocellulose applications in packaging materials 11.1 Introduction 11.2 Polymer-reinforced cellulose nanofiber composites 11.2.1 Polyethylene 11.2.2 Polypropylene 11.2.3 Polystyrene 11.2.4 Polyvinyl chloride 11.2.5 Polytetrafluoroethylene 11.2.6 Polylactic acid 11.2.7 Poly(hydroxyalkanoates) 11.3 Modifications to improve the properties of polymer-reinforced cellulose nanofiber composites 11.4 Fabrication methods of polymer-reinforced cellulose nanofiber composites 11.4.1 Extrusion 11.4.2 Internal melt-blending 11.4.3 Solvent casting 11.4.4 Injection and compression molding 11.4.5 One-pot extrusion 11.5 Conclusions References Chapter 12 Active biocomposite packaging films: Compatibility of carrageenan with cellulose nanofiber from empty fruit bunches 12.1 Introduction 12.2 Carrageenan 12.3 Cellulose 12.4 Compatibility between seaweed and cellulose 12.5 Glycerol as a plasticizer 12.6 Antioxidants in food packaging materials 12.7 Alpha-tocopherol 12.8 Biocomposite packaging film References Chapter 13 Enhanced thermal stability of cellulose nanocrystals for processing polymer nanocomposites at a high temperature 13.1 Introduction 13.2 Process to enhance the thermal stability of CNC 13.3 Thermally stable CNC-reinforced polymer nanocomposites References Chapter 14 Nanocellulose nanocomposites for biomedical applications 14.1 Introduction 14.2 Biological properties of cellulose-based biomedical materials 14.3 Advanced nanocellulose materials for biomedical applications 14.3.1 Biological implants 14.3.2 Drug delivery 14.3.3 Tissue engineering 14.3.4 Wound healing 14.3.4.1 Bacterial nanocellulose (BNC) 14.3.4.2 Plant-derived nanocellulose 14.3.4.3 Animal-derived nanocellulose 14.3.5 Antimicrobial applications 14.4 Conclusions and future perspectives References Chapter 15 Nanocellulose biocomposites in specialty papermaking 15.1 Introduction 15.2 Cellulose nanofiber (CNF) 15.2.1 Biocomposites, structural and non-structural biocomposites 15.3 Nanocellulose biocomposites in food packaging 15.3.1 About food packaging 15.3.2 Biodegradable polymers 15.3.3 Cellulose in packaging and bionanocomposites 15.3.4 Nanocellulose in bionanocomposite packaging 15.4 Nanocellulose biocomposites in high-durability paper 15.4.1 Advantages of nanocellulose application in high-durability paper 15.4.2 Challenges of nanocellulose application in high-durability paper 15.4.3 Incorporation of nanocellulose: Current situation 15.4.4 Promising nanocellulose in high-durability paper production 15.5 Nanocellulose biocomposites in printing paper 15.5.1 Factors affecting paper strength 15.5.2 Impact of cellulose nanofiber in printing paper 15.6 The future of nanocellulose biocomposites in specialty papermaking References Chapter 16 Nanocellulose composites in the pulp and paper industry 16.1 Introduction 16.2 Nanocellulose 16.3 Methods of incorporation of nanocellulose into paper-based products 16.3.1 Casting 16.3.1.1 Aqueous casting solution 16.3.1.2 Nonaqueous casting solution 16.3.2 Coating process 16.3.3 Filtration and papermaking processes 16.4 Paper-based products incorporated with nanocellulose 16.4.1 Paper sheet 16.4.2 Packaging 16.4.3 Nanofilm 16.5 Properties of nanocellulose-incorporated paper-based products 16.6 Challenges and future perspectives of nanocellulose in pulp and paper applications 16.7 Conclusions References Chapter 17 Nanocellulose nanocomposites in textiles 17.1 Introduction 17.2 Functionalization of nanocellulose in the textile industry 17.2.1 Thermal insulation 17.2.2 Antimicrobial properties 17.2.3 Adsorption kinetics of dye 17.3 Applications of nanocellulose in the textile industry 17.3.1 Medical tools 17.3.2 Military sector 17.4 Challenges related to application of nanocellulose in the textile industry 17.5 Conclusions References Chapter 18 Nanocellulose as a bioadsorbent for water and wastewater purification 18.1 Introduction 18.2 Chemical contaminants 18.2.1 Heavy metals 18.2.2 Dyes 18.2.3 Organic oils 18.2.4 Other chemical contaminants 18.3 Currently available bioadsorbents 18.3.1 Adsorption process 18.3.1.1 Activated carbon 18.3.1.2 Clays 18.3.1.3 Chitosan 18.3.1.4 Nanomaterials 18.4 Functionalization of nanocellulose 18.5 Nanocellulose as a bioadsorbent 18.5.1 Heavy metals 18.5.2 Dyes 18.5.3 Organics oil 18.6 Future direction and recommendations 18.7 Conclusions Acknowledgments References Chapter 19 Nanocellulose composites in the automotive industry 19.1 Introduction 19.2 The advantages of nanocellulose 19.3 Nanocellulose composites for automotive applications 19.3.1 Nanocellulose in thermoplastic composites for automotive 19.3.2 Nanocellulose in thermosetting composites for automotive 19.4 Performance of thermosetting polymers as a composite matrix 19.5 Performance of nanocellulose-reinforced thermosetting polymer composites 19.6 Future perspectives of nanocellulose 19.6.1 Perspective on nanocellulose in metal composites for automotive 19.7 Conclusions References Chapter 20 Advances in nanocellulose nanocomposites for bone repair 20.1 Introduction 20.1.1 The unique properties of nanocellulose 20.2 Tissue engineering 20.3 Cellulose nanocomposites 20.3.1 Fabrication techniques of cellulose nanocomposites 20.4 Cellulose nanocomposites for bone repair and regeneration 20.5 Concluding remarks References Chapter 21 Nanocellulose composites for electronic applications 21.1 Introduction 21.2 Types of nanocellulose 21.2.1 Nanofibrillated cellulose (NFC) 21.2.2 Nanocrystalline cellulose (NCC) 21.2.3 Bacterial nanocellulose (BNC) 21.3 Mechanical properties of nanocellulose polymer composites 21.4 Thermal properties of nanocellulose composites 21.5 Electrical properties of nanocellulose composites 21.6 Conductive nanocellulose composites 21.7 Nanocellulose in sensors 21.8 Nanocellulose in piezoelectric and electroactive effects 21.9 Nanocellulose in electronic components 21.9.1 Supercapacitors (SC) 21.9.2 Thin film transistors (TFTs) 21.9.3 Organic field-effect transistors (OFETs) 21.9.4 Organic light-emitting diodes (OLEDs) 21.10 Nanocellulose as a separator in lithium-ion batteries 21.11 Summary Acknowledgments References Index Back Cover