دسترسی نامحدود
برای کاربرانی که ثبت نام کرده اند
برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید
در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید
برای کاربرانی که ثبت نام کرده اند
درصورت عدم همخوانی توضیحات با کتاب
از ساعت 7 صبح تا 10 شب
ویرایش: 3
نویسندگان: Ion Boldea
سری: Electric Power Engineering Series
ISBN (شابک) : 0367466120, 9780367466121
ناشر: CRC Press
سال نشر: 2020
تعداد صفحات: 457
زبان: English
فرمت فایل : PDF (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود)
حجم فایل: 15 مگابایت
در صورت تبدیل فایل کتاب Induction Machines Handbook: Transients, Control Principles, Design and Testing به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.
توجه داشته باشید کتاب کتابچه راهنمای ماشین آلات: گذرا ، اصول کنترل ، طراحی و آزمایش نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.
دستنامه ماشینهای القایی: مدلسازی و عملکرد حالت پایدار درمان کاملی از ماشینهای القایی حالت پایدار (IM)، پرکاربردترین موتور الکتریکی (ژنراتور) در درایوهای سرعت ثابت یا متغیر، برای همیشه ارائه میدهد. مصرف انرژی کمتر و بهره وری بیشتر در اساساً در همه صنایع، از لوازم خانگی، رباتیک گرفته تا حمل و نقل الکترونیکی و تبدیل انرژی باد.
فصل 1 مقدمه ای مفصل از اصول اساسی تا طبقه بندی های توپولوژیکی و مهم ترین کاربردها و کاربردها را ارائه می دهد. توان از دهها وات تا دهها مگاوات متغیر است.
سپس فصلهای 2 و 4 به تفصیل به مسائل خاصی میپردازند، مانند
به طور کامل بازبینی و به روز شده است تا پیشرفت دهه گذشته در این زمینه را منعکس کند، این نسخه سوم بخشهای جدیدی مانند
وعده انرژی تجدیدپذیر (آبی و بادی) از طریق روتور قفس و ژنراتورهای سرعت متغیر با تغذیه مضاعف پیشرانه حمل و نقل الکترونیکی و لوازم خانگی i-home این نسخه سوم را به ابزاری پیشرفته تبدیل می کند که با مطالعات موردی متعدد و به موقع برای دانشگاه و صنعت طراحی شده است.
Induction Machines Handbook: Steady State Modeling and Performance offers a thorough treatment of steady-state induction machines (IM), the most used electric motor (generator) in rather constant or variable speed drives, forever lower energy consumption and higher productivity in basically all industries, from home appliances, through robotics to e-transport and wind energy conversion.
Chapter 1 offers a detailed introduction from fundamental principles to topological classifications and most important applications and power ranges from tens of W to tens of MW.
Then individual Chapters 2 and 4 deal in detail with specific issues, such as
Fully revised and updated to reflect the last decade’s progress in the field, this third edition adds new sections, such as
The promise of renewable (hydro and wind) energy via cage-rotor and doubly fed variable speed generators e-transport propulsion and i-home appliances makes this third edition a state-of-the-art tool, conceived with numerous case studies and timely for both academia and industry.
Cover Half Title Series Page Title Page Copyright Page Dedication Table of Contents Preface Author Chapter 1 Induction Machine Transients 1.1 Introduction 1.2 The Phase-Coordinate Model 1.3 The Complex Variable Model 1.4 Steady State by the Complex Variable Model 1.5 Equivalent Circuits for Drives 1.6 Electrical Transients with Flux Linkages as Variables 1.7 Including Magnetic Saturation in the Space-Phasor Model 1.8 Saturation and Core Loss Inclusion into the State-Space Model 1.9 Reduced-Order Models 1.9.1 Neglecting Stator Transients 1.9.2 Considering Leakage Saturation 1.9.3 Large Machines: Torsional Torque 1.10 The Sudden Short Circuit at Terminals 1.11 Most Severe Transients (So Far) 1.12 The abc–d-q Model for PWM Inverter-Fed IMs 1.12.1 Fault Conditions 1.13 First-Order Models of IMs for Steady-State Stability in Power Systems 1.14 Multimachine Transients 1.15 Subsynchronous Resonance (SSR) 1.16 The M/N[sub(r)] Actual Winding Modelling for Transients 1.17 Multiphase Induction Machines Models for Transients 1.17.1 The Six-Phase Machine 1.17.2 The Five-Phase Machine 1.18 Doubly Fed Induction Machine Models for Transients 1.19 Cage-Rotor Synchronized Reluctance Motors 1.20 Cage Rotor PM Synchronous Motors 1.21 Summary References Chapter 2 Single-Phase IM Transients 2.1 Introduction 2.2 The d-q Model Performance in Stator Coordinates 2.3 Starting Transients 2.4 The Multiple-Reference Model for Transients 2.5 Including the Space Harmonics 2.6 Summary References Chapter 3 Super-High-Frequency Models and Behaviour of IMs 3.1 Introduction 3.2 Three High-Frequency Operation Impedances 3.3 The Differential Impedance 3.4 Neutral and Common Mode Impedance Models 3.5 The Super-High-Frequency Distributed Equivalent Circuit 3.6 Bearing Currents Caused by PWM Inverters 3.7 Ways to Reduce PWM Inverter Bearing Currents 3.8 Summary References Chapter 4 Motor Specifications and Design Principles 4.1 Introduction 4.2 Typical Load Shaft Torque/Speed Envelopes 4.3 Derating due to Voltage Time Harmonics 4.4 Voltage and Frequency Variation 4.5 Specifying Induction Motors for Constant V and f 4.6 Matching IMs to Variable Speed/Torque Loads 4.7 Design Factors 4.7.1 Costs 4.7.2 Material Limitations 4.7.3 Standard Specicatfiions 4.7.4 Special Factors 4.8 Design Features 4.9 The Output Coefficient Design Concept 4.10 The Rotor Tangential Stress Design Concept 4.11 Summary References Chapter 5 IM Design below 100 KW and Constant V and f(Size Your Own IM) 5.1 Introduction 5.2 Design Specifications by Example 5.3 The Algorithm 5.4 Main Dimensions of Stator Core 5.5 The Stator Winding 5.6 Stator Slot Sizing 5.7 Rotor Slots 5.8 The Magnetization Current 5.9 Resistances and Inductances 5.9.1 Skewing Effect on Reactances 5.10 Losses and Efficiency 5.11 Operation Characteristics 5.12 Temperature Rise 5.13 Summary References Chapter 6 Induction Motor Design above 100 KW and Constant V and f(Size Your Own IM) 6.1 Introduction 6.2 Medium-Voltage Stator Design 6.2.1 Main Stator Dimensions 6.2.2 Stator Main Dimensions 6.2.3 Core Construction 6.2.4 The Stator Winding 6.3 Low-Voltage Stator Design 6.4 Deep Bar Cage Rotor Design 6.4.1 Stator Leakage Reactance X[sub(sl)] 6.4.2 The Rotor Leakage Inductance L[sub(rl)] 6.5 Double-Cage Rotor Design 6.5.1 Working Cage Sizing 6.6 Wound Rotor Design 6.6.1 The Rotor Back Iron Height 6.7 IM with Wound Rotor-Performance Computation 6.7.1 Magnetization mmfs 6.7.2 The Airgap F[sub(g)] 6.7.3 The Stator Teeth mmf 6.7.4 Rotor Tooth mmf (F[sub(tr)]) Computation 6.7.5 Rotor Back Iron mmf F[sub(cr)] (as for the Stator) 6.7.6 The Rotor Winding Parameters 6.7.7 The Rotor Slot Leakage Geometrical Permeance Coefficient λ[sub(sr)] 6.7.8 Losses and Efficiency 6.7.9 The Machine Rated Efficiency η[sub(n)] 6.7.10 The Rated Slip S[sub(n)] (with Short-Circuited Slip Rings) 6.7.11 The Breakdown Torque 6.8 Summary References Chapter 7 Induction Machine Design for Variable Speed 7.1 Introduction 7.2 Power and Voltage Derating 7.3 Reducing the Skin Effect in Windings 7.3.1 Rotor Bar Skin Effect Reduction 7.4 Torque Pulsations Reduction 7.5 Increasing Efficiency 7.6 Increasing the Breakdown Torque 7.7 Wide Constant Power Speed Range via Voltage Management 7.8 Design for High- and Super-High-Speed Applications 7.8.1 Electromagnetic Limitations 7.8.2 Rotor Cooling Limitations 7.8.3 Rotor Mechanical Strength 7.8.4 The Solid Iron Rotor 7.8.5 21 kW, 47,000 rpm, 94% Efficiency with Laminated Rotor 7.9 Sample Design Approach for Wide Constant Power Speed Range 7.9.1 Solution Characterization 7.10 Summary References Chapter 8 Optimization Design Issues 8.1 Introduction 8.2 Essential Optimization Design Methods 8.3 The Augmented Lagrangian Multiplier Method (ALMM) 8.4 Sequential Unconstrained Minimization 8.5 Modified Hooke–Jeeves Method 8.6 Genetic Algorithms 8.6.1 Reproduction (Evolution and Selection) 8.6.2 Crossover 8.6.3 Mutation 8.6.4 GA Performance Indices 8.7 Summary References Chapter 9 Single-Phase IM Design 9.1 Introduction 9.2 Sizing the Stator Magnetic Circuit 9.3 Sizing the Rotor Magnetic Circuit 9.4 Sizing the Stator Windings 9.5 Resistances and Leakage Reactances 9.6 The Magnetization Reactance x[sub(mm)] 9.7 The Starting Torque and Current 9.8 Steady-State Performance around Rated Power 9.9 Guidelines for a Good Design 9.10 Optimization Design Issues 9.11 Two-Speed PM Split-Phase Capacitor Induction/Synchronous Motor 9.11.1 Pole-Changing and Using Permanent Magnets 9.11.2 The Chosen Geometry 9.11.3 Experimental Results 9.11.4 Theoretical Characterization: Steady-State Model and Optimal Design 9.11.5 Steady-State Model 9.11.6 Optimal Design 9.11.7 2D FEM Investigations 9.11.8 Proposed Circuit Model for Transients and Simulation Results 9.11.9 Conclusion 9.12 Summary References Chapter 10 Three-Phase Induction Generators 10.1 Introduction 10.2 Self-Excited Induction Generator (SEIG) Modelling 10.3 Steady-State Performance of SEIG 10.4 The Second-Order Slip Equation Model for Steady State 10.5 Steady-State Characteristics of SEIG for Given Speed and Capacitor 10.6 Parameter Sensitivity in SEIG Analysis 10.7 Pole Changing SEIGs 10.8 Unbalanced Steady-State Operation of SEIG 10.8.1 The Delta-Connected SEIG 10.8.2 Star-Connected SEIG 10.8.3 Two Phases Open 10.9 Transient Operation of SEIG 10.10 SEIG Transients with Induction Motor Load 10.11 Parallel Operation of SEIGs 10.12 The Doubly Fed IG (DFIG) Connected to the Grid 10.12.1 Basic Equations 10.12.2 Steady-State Operation 10.13 DFIG Space-Phasor Modelling for Transients and Control 10.14 Reactive-Active Power Capability of DFIG 10.14 Stand-alone DFIGs 10.15 DSW Cage and Nested-Cage Rotor Induction Generators 10.16 DFIG with Diode-Rectified Output 10.17 Summary References Chapter 11 Single-Phase Induction Generators 11.1 Introduction 11.2 Steady-State Model and Performance 11.3 The d-q Model for Transients 11.4 Expanding the Operation Range with Power Electronics 11.5 Summary References Chapter 12 Linear Induction Motors 12.1 Introduction 12.2 Classifications and Basic Topologies 12.3 Primary Windings 12.4 Transverse Edge Effect in Double-Sided LIM 12.4.1 The Transverse Edge Effect Correction Coefficients 12.5 Transverse Edge Effect in Single-Sided LIM 12.6 A Technical Theory of LIM Longitudinal End Effects 12.7 Longitudinal End-Effect Waves and Consequences 12.8 Secondary Power Factor and Efficiency 12.9 The Optimum Goodness Factor 12.10 Linear Flat Induction Actuators (No Longitudinal End Effect) 12.10.1 The Equivalent Circuit 12.10.2 Performance Computation 12.10.3 Normal Force in Single-Sided Configurations 12.10.4 A Numerical Example 12.10.5 Design Methodology by Example 12.10.6 The Ladder Secondary 12.11 Tubular LIAs 12.11.1 A Numerical Example 12.12 Short-Secondary Double-Sided LIAs 12.13 Linear Induction Motors for Urban Transportation 12.13.1 Specifications 12.13.2 Data from Past Experience 12.13.3 Objective Functions 12.13.4 Typical Constraints 12.13.5 Typical Variables 12.13.6 The Analysis Model 12.13.7 Discussion of Numerical Results 12.14 Transients and Control of LIMs 12.15 LIM Control with Dynamic Longitudinal End Effect 12.16 Electromagnetic Induction Launchers 12.17 Summary References Chapter 13 Testing of Three-Phase IMs 13.1 Loss Segregation Tests 13.1.1 The No-Load Motor Test 13.1.2 Stray Losses from No-Load Overvoltage Test 13.1.3 Stray Load Losses from the Reverse Rotation Test 13.1.4 The Stall Rotor Test 13.1.5 No-Load and Stall Rotor Tests with PWM Converter Supply 13.1.6 Loss Measurement by Calorimetric Methods 13.2 Efcfiiency Measurements 13.2.1 IEEE Standard 112–1996 13.2.2 IEC Standard 34–2 13.2.3 Efficiency Test Comparisons 13.2.4 The Motor/Generator Slip Efficiency Method 13.2.5 The PWM Mixed-Frequency Temperature Rise and Efficiency Tests (Artificial Loading) 13.2.5.1 The Accelerating–Decelerating Method 13.2.5.2 The PWM Dual Frequency Test 13.3 The Temperature-Rise Test via Forward Short-circuit (FSC) Method 13.4 Parameter Estimation Tests 13.4.1 Parameter Calculation from No-Load and Standstill Tests 13.4.2 The Two-Frequency Standstill Test 13.4.3 Parameters from Catalogue Data 13.4.4 Standstill Frequency Response Method 13.4.5 The General Regression Method for Parameters Estimation 13.4.6 Large IM Inertia and Parameters from Direct Starting Acceleration and Deceleration Data 13.5 Noise and Vibration Measurements: From No Load to Load 13.5.1 When On-Load Noise Tests Are Necessary? 13.5.2 How to Measure the Noise On-Load 13.6 Recent Trends in IM Testing 13.7 Cage-PM Rotor Line-Start IM Testing 13.8 Linear Induction Motor (LIM) Testing 13.9 Summary References Chapter 14 Single-Phase IM Testing 14.1 Introduction 14.2 Loss Segregation in Split-Phase and Capacitor-Start IMs 14.3 The Case of Closed Rotor Slots 14.4 Loss Segregation in Permanent Capacitor IMs 14.5 Speed (Slip) Measurements 14.6 Load Testing 14.7 Complete Torque–Speed Curve Measurements 14.8 Summary References Index