دسترسی نامحدود
برای کاربرانی که ثبت نام کرده اند
برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید
در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید
برای کاربرانی که ثبت نام کرده اند
درصورت عدم همخوانی توضیحات با کتاب
از ساعت 7 صبح تا 10 شب
دسته بندی: مکانیک: مکانیک سیالات ویرایش: نویسندگان: P. A. Davidson سری: ISBN (شابک) : 2021937986, 9780198869122 ناشر: Oxford University Press سال نشر: 2022 تعداد صفحات: 529 زبان: English فرمت فایل : PDF (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود) حجم فایل: 9 مگابایت
در صورت تبدیل فایل کتاب Incompressible Fluid Dynamics به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.
توجه داشته باشید کتاب دینامیک سیالات تراکم ناپذیر نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.
ncompressible Fluid Dynamics یک کتاب درسی برای دانشجویان کارشناسی ارشد و پیشرفته در رشته های مهندسی، ریاضیات کاربردی و ژئوفیزیک است. متن شامل موضوعاتی است که چارچوب مفهومی گسترده موضوع را ایجاد می کند، پدیده های کلیدی را آشکار می کند و نقش مهمی در کاربردهای بی شماری که هم در طبیعت و هم در فناوری وجود دارد. نیمه اول کتاب موضوعاتی را در بر می گیرد که شامل معادلات غیر لزج اویلر و برنولی، معادله ناویر-استوکس و برخی از راه حل های دقیق ساده تر آن، لایه های مرزی آرام و جت ها، نظریه جریان پتانسیل با کاربردهای مختلف آن در آیرودینامیک، نظریه سطح امواج گرانشی، و جریان هایی با اینرسی ناچیز، مانند تعلیق، لایه های روان کننده، و میکروارگانیسم های شنا. نیمه دوم تخصصی تر است. دینامیک گرداب، که برای بسیاری از پدیده های طبیعی در مکانیک سیالات بسیار ضروری است، با جزئیات توسعه یافته است. پس از آن، فصلهایی در مورد سیالات و جریانهای طبقهبندی شده با یک چرخش پسزمینه قوی دنبال میشود، که هر دو موضوع برای درک ما از جریان های جوی و اقیانوسی ناپایداری های سیال و گذار به تلاطم نیز پوشش داده شده است و به دنبال آن دو فصل در مورد تلاطم کاملاً توسعه یافته آمده است. متن تا حد زیادی مستقل است و هدف آن ترکیب دقت ریاضی با وسعت کاربردهای مهندسی و ژئوفیزیک است. در کل، بینش فیزیکی بر جزئیات ریاضی اولویت داده می شود.
ncompressible Fluid Dynamics is a textbook for graduate and advanced undergraduate students of engineering, applied mathematics, and geophysics. The text comprises topics that establish the broad conceptual framework of the subject, expose key phenomena, and play an important role in the myriad of applications that exist in both nature and technology. The first half of the book covers topics that include the inviscid equations of Euler and Bernoulli, the Navier-Stokes equation and some of its simpler exact solutions, laminar boundary layers and jets, potential flow theory with its various applications to aerodynamics, the theory of surface gravity waves, and flows with negligible inertia, such as suspensions, lubrication layers, and swimming micro-organisms. The second half is more specialised. Vortex dynamics, which is so essential to many natural phenomena in fluid mechanics, is developed in detail. This is followed by chapters on stratified fluids and flows subject to a strong background rotation, both topics being central to our understanding of atmospheric and oceanic flows. Fluid instabilities and the transition to turbulence are also covered, followed by two chapters on fully developed turbulence. The text is largely self-contained, and aims to combine mathematical precision with a breadth of engineering and geophysical applications. Throughout, physical insight is given priority over mathematical detail.
Cover Incompressible Fluid Dynamics Copyright Dedication Preface Contents Prologue 1: Elementary Definitions, Some Simple Kinematics, and the Dynamics of Ideal Fluids 1.1 Elementary Definitions 1.1.1 What is the Mechanical Definition of a Fluid? 1.1.2 Fluid Statics and One Definition of Pressure 1.1.3 Different Categories of Fluid and of Fluid Flow 1.2 Some Simple Kinematics 1.2.1 Eulerian Versus Lagrangian Descriptions of Motion 1.2.2 The Convective Derivative 1.2.3 Mass Conservation and the Streamfunction 1.3 The Dynamics of an Ideal (Inviscid) Fluid of Uniform Density 1.3.1 Euler’s Equation for a Fluid of Uniform Density 1.3.2 Bernoulli’s Equation and Mechanical Energy Conservation 1.3.3 Some Applications of Bernoulli’s Equation 1.3.4 Inviscid Momentum Conservation in Integral Form 1.3.5 Examples of the Use of Momentum Conservation to Calculate Pressure Forces 1.3.6 More on Momentum Conservation: Inviscid Flow Through a Cascade of Blades 1.4 Examples of the Failure of Ideal Fluid Mechanics 1.4.1 The Borda–Carnot ‘Head Loss’ in a Sudden Pipe Expansion 1.4.2 The Hydraulic Jump Exercises References 2: Governing Equations and Flow Regimes for a Real Fluid 2.1 Viscosity, Viscous Stresses, and the No-slip Boundary Condition 2.2 More Kinematics: Characterizing the Deformation and Spin of Fluid Elements 2.2.1 Two Things that Happen to a Fluid Element as it Slides down a Streamline 2.2.2 The Rate-of-strain Tensor and the Deformation of Fluid Elements 2.2.3 Vorticity: the Intrinsic Spin of Fluid Elements 2.3 Dynamics at Last: the Stress Tensor and Cauchy’s Equation of Motion 2.4 The Navier–Stokes Equation 2.4.1 Newton’s Law of Viscosity 2.4.2 The Navier–Stokes Equation and the Reynolds Number 2.4.3 Navier–Stokes as an Evolution Equation for the Velocity Field 2.4.4 The Viscous Dissipation of Mechanical Energy 2.5 The Momentum Equation for Viscous Flow in Integral Form 2.6 The Role of Boundaries and Prandtl’s Boundary-layer Equation 2.6.1 The Need for Boundary Layers at High Reynolds Number 2.6.2 Changes in Flow Regime as the Reynolds Number Increases 2.7 From Linear to Angular Velocity: Vorticity and its Evolution Equation 2.7.1 The Biot–Savart Law Applied to Vorticity: an Analogy with Magnetostatics 2.7.2 The Vorticity Evolution Equation 2.7.3 Where does the Vorticity come from? 2.7.4 Enstrophy and its Governing Equation 2.7.5 A Glimpse at Potential (Vorticity Free) Flow and its Limitations 2.8 Summing up: Real versus Ideal Fluid Mechanics Exercises References 3: Some Elementary Solutions of the Navier–Stokes Equation 3.1 Some Simple Laminar Flows 3.1.1 Planar Viscous Flow 3.1.2 The Boundary Layer near a Two-dimensional Stagnation Point 3.2 The Diffusion of Vorticity from a Moving Surface 3.2.1 The Impulsively Started Plate: Stokes’ First Problem 3.2.2 The Oscillating Plate: Stokes’ Second Problem 3.3 The Navier–Stokes Equation in Cylindrical Polar Coordinates 3.3.1 Moving from Cartesian to Cylindrical Polar Coordinates 3.3.2 Hagen–Poiseuille Flow in a Pipe 3.3.3 Rotating Couette Flow 3.3.4 The Diffusion of a Long, Thin, Cylindrical Vortex 3.3.5 A Thin Film on a Spinning Disc 3.3.6 The Azimuthal–poloidal Decomposition of Axisymmetric Flows Exercises References 4: Flows with Negligible Inertia: Stokes Flow, Lubrication Theory, and Thin Films 4.1 Motion at Low Reynolds Number: Stokes Flow 4.1.1 The Governing Equations at Low Reynolds Number 4.1.2 Flow past a Sphere at Low Reynolds Number 4.1.3 The Oseen Correction for Flow over a Sphere at Low Re 4.1.4 The Uniqueness and Minimum Dissipation Theorems for Low-Re Flows 4.1.5 Two-dimensional Flow in a Wedge at Low Reynolds Number 4.1.6 Suspensions 4.1.7 The Subtleties of Self-propulsion at Low Reynolds Number 4.2 Lubrication Theory 4.2.1 The Approximations and Governing Equations of Lubrication Theory 4.2.2 Reynolds’ Analysis of the Slipper Bearing 4.2.3 Sommerfeld’s Analysis of the Journal Bearing 4.2.4 Rayleigh’s Analysis of the Stepped Bearing 4.3 Thin Films with a Free Surface 4.3.1 Approximations and Governing Equations 4.3.2 The Gravity-driven Spreading of a Circular Pool 4.3.3 A Film on an Incline 4.3.4 A Thin Film on a Rotating Disc (Reprise) Exercises References 5: Laminar Flow at High Reynolds Number: Boundary Layers 5.1 Prandtl’s Boundary Layer and a Revolution in Fluid Dynamics 5.2 The Archetypal Boundary Layer: a Flat Plate Aligned with a Uniform Flow 5.3 A Generalization of Prandtl’s Boundary Layer to Other Physical Systems 5.3.1 A Popular Model Problem and the Concept of Matched Asymptotic Expansions 5.3.2 Prandtl’s Generalization of the Boundary Layer: Another Model Problem 5.4 The Effects of an Accelerating External Flow on Boundary-layer Development 5.4.1 The Falkner–Skan Solutions for Flow over a Two-dimensional Wedge 5.4.2 The Boundary Layer near the Forward Stagnation Point of a Circular Cylinder 5.5 Jeffery–Hamel Flow in a Convergent or Divergent Channel 5.6 Boundary-layer Separation and Pressure Drag 5.7 Thermal Boundary Layers 5.7.1 Forced Convection 5.7.2 Free Convection 5.8 Submerged Laminar Jets 5.8.1 The Two-dimensional Jet 5.8.2 The Axisymmetric Jet Exercises References 6: Potential Flow Theory with Applications to Aerodynamics 6.1 Some Elementary Ideas in Potential Flow Theory 6.1.1 The Physical Basis for, and Dangers of, Potential Flow Theory 6.1.2 The Retrospective Application of Newton’s Second Law: Bernoulli Revisited 6.1.3 Some Simple Examples of Two-dimensional Potential Flow 6.1.4 D’Alembert’s Paradox 6.2 The Kinematics of Two-dimensional Potential Flow 6.2.1 The Complex Potential 6.2.2 Some Elementary Examples of the Complex Potential 6.2.3 Flow Normal to a Flat Plate of Finite Width 6.2.4 A Not so Simple Example: the Intake to a Submerged Duct 6.2.5 The Method of Images for Plane and Cylindrical Boundaries 6.3 The Lift Force Exerted on a Body by a Uniform Incident Flow 6.3.1 Two-dimensional Flow over a Cylinder with Circulation: an Illustrative Example 6.3.2 Flow over a Planar Body of Arbitrary Shape: the Kutta–Joukowski Lift Theorem 6.3.3 Kelvin’s Circulation Theorem 6.3.4 The Role of Boundary-layer Vorticity in Establishing Circulation round an Aerofoil 6.3.5 The Lift Generated by a Slender Aerofoil Exercises References 7: Surface Gravity Waves in Deep and Shallow Water 7.1 The Wave Equation and Dispersive versus Non-dispersive Waves 7.1.1 The Wave Equation and d’Alembert’s Solution 7.1.2 Two Classes of Waves: Dispersive versus Non-dispersive Waves 7.2 Two-dimensional Surface Gravity Waves of Small Amplitude 7.2.1 Surface Gravity Waves on Water of Arbitrary Depth 7.2.2 Shallow-water and Deep-water Waves 7.2.3 Particle Paths, Stokes Drift, and Energy Density in Deep-water Waves 7.2.4 Wave Drag in Deep Water 7.3 The General Theory of Dispersive Waves 7.3.1 Dispersion, Wave Packets, and the Group Velocity 7.3.2 The Energy Flux in a Wave Packet 7.4 The Dispersion of Small-amplitude Surface Gravity Waves 7.4.1 The Group Velocity and Energy Density for Waves on Water of Arbitrary Depth 7.4.2 Waves Approaching a Beach 7.4.3 The Influence of Surface Tension on Dispersion 7.5 Finite-amplitude Waves in Shallow Water 7.5.1 The Inviscid Shallow-water Equations 7.5.2 Finite-amplitude Waves and Non-linear Wave Steepening 7.5.3 The Solitary Wave 1: Rayleigh’s Solution 7.5.4 Solitary Waves 2: The KdeV Equation 7.5.5 More General Solutions of the KdeV Equation: Cnoidal Waves 7.5.6 The Hydraulic Jump Revisited Exercises References 8: Vortex Dynamics: Classical Theory and Illustrative Examples 8.1 Vorticity and its Evolution Equation (Revisited) 8.2 Inviscid Vortex Dynamics 8.2.1 The Classical Theories of Helmholtz and Kelvin 8.2.2 Helicity and its Conservation 8.2.3 Steady, Axisymmetric Flows and the Squire–Long Equation 8.2.4 Viscous versus Inviscid Vortex Dynamics 8.3 A Qualitative Overview of some Simple Isolated Vortices 8.3.1 The Interaction of Line Vortices 8.3.2 A Glimpse at Vortex Rings 8.3.3 Vortices due to Boundary-layer Separation 8.3.4 Columnar Vortices in the Atmosphere and Oceans 8.4 Viscous Vortex Dynamics I: the Prandtl–Batchelor Theorem 8.4.1 The Physical Origins of the Prandtl–Batchelor Theorem 8.4.2 A Proof of the Theorem 8.5 Viscous Vortex Dynamics II: Burgers’ Vortex 8.5.1 A Dilemma in Turbulence: Finite Energy Dissipation for Vanishing Viscosity 8.5.2 Burgers’ Axisymmetric Vortex 8.5.3 The Robust Nature of Burgers’ Vortex 8.6 More Axisymmetric Vortices (both Viscous and Inviscid) 8.6.1 Hill’s Spherical Vortex 8.6.2 The Velocity Field and Kinetic Energy of a Thin Vortex Ring 8.7 Viscous Vortex Dynamics III: the Impulse of Localized Vorticity Fields 8.7.1 The Far field of a Localized Vorticity Distribution 8.7.2 The Spontaneous Redistribution of Momentum in Space 8.7.3 Conservation of Linear Impulse and its Relationship to Linear Momentum 8.7.4 Conservation of Angular Impulse and its Relationship to Angular Momentum 8.7.5 Axisymmetric Examples of Impulse and Vortex Rings Revisited Exercises References 9: Waves and Flow in a Stratified Fluid 9.1 The Boussinesq Approximation and a Second Definition of the Froude Number 9.2 The Suppression of Vertical Motion: a Simple Scaling Analysis 9.3 The Phenomenon of Blocking 9.4 Lee Waves 9.4.1 Linear Lee Waves in Two Dimensions 9.4.2 Finite-amplitude Lee Waves in Two Dimensions 9.5 Internal Gravity Waves of Small Amplitude 9.5.1 Linear Theory and Simple Examples 9.5.2 The Reflection of Internal Gravity Waves 9.6 Generalized Vortex Dynamics: Bjerknes’ Theorem and Ertel’s Potential Vorticity Exercises References 10: Waves and Flow in a Rotating Fluid 10.1 Rayleigh’s Stability Criterion for Inviscid, Swirling Flow 10.2 The Equations of Motion in a Rotating Frame of Reference 10.2.1 The Coriolis Force and the Rossby Number 10.2.2 Rapid Rotation: the Taylor–Proudman Theorem and Drifting Taylor Columns 10.3 Inertial Waves of Small Amplitude 10.3.1 Their Dispersion Relationship, Group Velocity, and Spatial Structure 10.3.2 The Formation of Transient Taylor Columns by Low-frequency Waves 10.3.3 The Spontaneous Focussing of Inertial Waves and the Formation of Columnar Vortices 10.3.4 Helicity Generation and Helicity Segregation by Inertial Waves 10.3.5 Finite-amplitude Inertial Waves 10.4 Rossby Waves 10.5 Ekman Boundary Layers and Ekman Pumping 10.5.1 Confined Swirling Flows: the Solutions of Kármán, Bödewadt, and Ekman 10.5.2 Ekman Layers as a Mechanism for Energy Dissipation 10.6 Tropical Cyclones 10.6.1 The Anatomy of a Tropical Cyclone 10.6.2 A Simple Model of a ‘Dry’ Cyclone Exercises References 11: Instability 11.1 The Centrifugal Instability 11.1.1 Rayleigh’s Inviscid Criterion for Axisymmetric Disturbances 11.1.2 Two-dimensional Inviscid Disturbances (Rayleigh again) 11.1.3 Viscous Instability and Taylor’s Analysis 11.1.4 The Experimental Evidence 11.2 The Stability of a Fluid Heated from Below 11.2.1 Rayleigh–Bénard Convection 11.2.2 Rayleigh’s Stability Analysis 11.2.3 Slip Boundaries Top and Bottom: an Artificial but Informative Case 11.2.4 No-slip Boundaries 11.3 The Stability of Parallel Shear Flows 11.3.1 Rayleigh’s Inflection Point Theorem for Inviscid, Rectilinear Flow 11.3.2 The Subtle Effects of Viscosity 11.4 The Kelvin–Helmholtz Instability 11.4.1 The Instability of an Inviscid Vortex Sheet 11.4.2 The Inviscid Instability of a Layer of Vorticity of Finite Thickness 11.5 The Stability of Continuously Stratified Shear Flow 11.5.1 The Taylor–Goldstein Equation for Fluctuations in a Stratified Shear Flow 11.5.2 The Richardson Number Criterion for the Stability of a Stratified Shear Flow 11.5.3 An Interpretation of the Stability Criterion in terms of Energy 11.6 The Kelvin–Arnold Variational Principle for Inviscid Flows 11.6.1 A Statement of the Theorem 11.6.2 A Derivation of the Theorem 11.6.3 Some Simple Applications of the Theorem 11.7 A Variational Principle for Inviscid Flows based on the Lagrangian 11.8 The Stability of Pipe Flow: a Qualitative Discussion Exercises References 12: The Transition to Turbulence and the Nature of Chaos 12.1 Some Common Themes in the Transition to Turbulence 12.2 A Definition of Turbulence 12.3 The Nature of Chaos: the Logistic Map as an Example 12.4 Landau’s Inspired (but Incomplete) Vision of the Transition to Turbulence Exercises References 13: An Introduction to Turbulence and to Kolmogorov’s Theory 13.1 Elementary Properties of Turbulence: a Qualitative Overview 13.1.1 The Need for a Statistical Approach and the Problem of Closure 13.1.2 The Various Stages of Development of Freely Decaying Turbulence 13.1.3 Richardson’s Energy Cascade 13.1.4 The Rate of Destruction of Energy and an Estimate of Kolmogorov’s Microscales 13.2 A Digression into the Kinematics of Homogeneous Turbulence 13.2.1 Two Useful Diagnostic Tools: Correlation Functions and Structure Functions 13.2.2 The Simplifications of Isotropy and the Taylor Scale 13.2.3 Scale-by-scale Energy Distributions in Fourier Space: the Energy Spectrum 13.2.4 Relating Real-space and Spectral-space Estimates of the Energy Distribution 13.2.5 A Common Error in the Interpretation of Energy Spectra 13.3 Kolmogorov’s Universal Equilibrium Theory of the Small Scales (K41) 13.3.1 Does Small-scale Turbulence have a Universal, Isotropic Structure at Large Re? 13.3.2 Kolmogorov’s Universal Equilibrium Theory: the Two-thirds and Five-thirds Laws 13.3.3 The Kármán–Howarth Equation 13.3.4 Kolmogorov’s Four-fifths Law 13.3.5 Obukhov’s Constant Skewness Closure Model 13.4 Subsequent Refinements to K41 13.4.1 Landau’s Objection to K41 Based on Large-scale Intermittency of the Dissipation 13.4.2 Kolmogorov’s 1961 Refinement of K41 based on Inertial-range Intermittency 13.5 The Probability Distribution of the Velocity Field 13.5.1 The Skewness and Flatness Factors 13.5.2 The Flatness Factor as a Measure of Intermittency 13.5.3 The Skewness Factor as a Measure of Enstrophy Production Exercises References 14: Turbulent Shear Flows and Simple Closure Models 14.1 Reynolds Stresses, Energy Budgets, and the Concept of Eddy Viscosity 14.1.1 Reynolds Stresses and the Closure Problem (Reprise) 14.1.2 The Eddy Viscosity Model of Boussinesq, Taylor, and Prandtl 14.2 The Transfer of Energy from the Mean Flow to the Turbulence 14.3 Turbulent Jets 14.3.1 The Plane Jet 14.3.2 The Round Jet 14.4 Turbulent Flow near a Smooth Boundary: the Log-law of the Wall 14.4.1 The Log-law of the Wall in Channel Flow 14.4.2 The Log-law and Viscous Sublayer for Other Smooth-walled Flows 14.4.3 Inactive Motion: a Problem for the Universality of the Log-law? 14.4.4 Energy Balances and Structure Functions in the Log-law Layer 14.4.5 Coherent Structures and Near-wall Cycles 14.4.6 Turbulent Heat Transfer near a Surface and the Log-law for Temperature 14.5 The Influence of Surface Roughness and Stratification on Turbulent Shear Flow 14.5.1 The Log-law for Flow over a Rough Surface 14.5.2 The Atmospheric Boundary Layer, Stratification, and the Flux Richardson Number 14.5.3 Prandtl’s Weak-shear Model of the Atmospheric Boundary Layer 14.5.4 The Monin–Obukhov Theory of the Atmospheric Boundary Layer 14.6 Closure Models for Turbulent Shear Flows: the k-" Model as an Example 14.6.1 The Basis of the k-" Closure Model 14.6.2 The k-" Model applied to Some Simple Turbulent Flows Exercises References Appendices 1: Dimensional Analysis References 2: Vector Identities and Theorems 3: Navier–Stokes Equation in Cylindrical Polar Coordinates 4: The Fourier Transform References 5: The Physical Properties of Some Common Fluids Index