دسترسی نامحدود
برای کاربرانی که ثبت نام کرده اند
برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید
در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید
برای کاربرانی که ثبت نام کرده اند
درصورت عدم همخوانی توضیحات با کتاب
از ساعت 7 صبح تا 10 شب
ویرایش:
نویسندگان: Ken’ichi Ohshika. Athanase Papadopoulos
سری:
ISBN (شابک) : 3030975592, 9783030975593
ناشر: Springer
سال نشر: 2022
تعداد صفحات: 524
[525]
زبان: English
فرمت فایل : PDF (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود)
حجم فایل: 11 Mb
در صورت ایرانی بودن نویسنده امکان دانلود وجود ندارد و مبلغ عودت داده خواهد شد
در صورت تبدیل فایل کتاب In the Tradition of Thurston II: Geometry and Groups به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.
توجه داشته باشید کتاب در سنت تورستون دوم: هندسه و گروه ها نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.
The purpose of this volume and of the other volumes in
the same series is to provide a collection of surveys that
allows the reader to learn the important aspects of William
Thurston’s heritage. Thurston’s ideas have altered the course
of twentieth century mathematics, and they continue to have a
significant influence on succeeding generations of
mathematicians. The topics covered in the present volume
include com-plex hyperbolic Kleinian groups, Möbius
structures, hyperbolic ends, cone 3-manifolds, Thurston’s
norm, surgeries in representation varieties, triangulations,
spaces of polygo-nal decompositions and of singular flat
structures on surfaces, combination theorems in the theories
of Kleinian groups, hyperbolic groups and holomorphic
dynamics, the dynamics and iteration of rational maps,
automatic groups, and the combinatorics of right-angled Artin
groups.
Preface Contents 1 Introduction 2 A Survey of Complex Hyperbolic Kleinian Groups 2.1 Introduction 2.2 Complex Hyperbolic Space 2.3 Basics of Discrete Subgroups of PU(n,1) 2.4 Margulis Lemma and Thick-Thin Decomposition 2.5 Geometrically Finite Groups 2.6 Ends of Negatively Curved Manifolds 2.7 Critical Exponent 2.8 Examples 2.9 Complex Hyperbolic Kleinian Groups and Function Theory on Complex Hyperbolic Manifolds 2.10 Conjectures and Questions Appendix A: Horofunction Compactification Appendix B: Two Classical Peano Continua Appendix C: Gromov-Hyperbolic Spaces and Groups Appendix D: Orbifolds Appendix E: Ends of Spaces Appendix F: Generalities on Function Theory on Complex Manifolds Appendix G (by Mohan Ramachandran): Proof of Theorem 2.19 References 3 Möbius Structures, Hyperbolic Ends and k-Surfaces in Hyperbolic Space 3.1 Overview 3.1.1 Hyperbolic Ends and Möbius Structures 3.1.2 Infinitesimal Strict Convexity, Quasicompleteness and the Asymptotic Plateau Problem 3.1.3 Schwarzian Derivatives 3.1.4 Closing Remarks and Acknowledgements 3.2 Möbius Structures 3.2.1 Möbius Structures 3.2.2 The Möbius Disk Decomposition and the Join Relation 3.2.3 Geodesic Arcs and Convexity 3.2.4 The Kulkarni–Pinkall Form 3.2.5 Analytic Properties of the Kulkarni–Pinkall Form 3.3 Hyperbolic Ends 3.3.1 Hyperbolic Ends 3.3.2 The Half-Space Decomposition 3.3.3 Geodesic Arcs and Convexity 3.3.4 Ideal Boundaries 3.3.5 Extensions of Möbius Surfaces 3.3.6 Left Inverses and Applications 3.4 Infinitesimally Strictly Convex Immersions 3.4.1 Infinitesimally Strictly Convex Immersions 3.4.2 A Priori Estimates 3.4.3 Cheeger–Gromov Convergence 3.4.4 Labourie's Theorems and Their Applications 3.4.5 Uniqueness and Existence Appendix A: A Non-complete k-Surface Appendix B: Category Theory References 4 Cone 3-Manifolds 4.1 Introduction 4.2 Cone Manifolds 4.3 Hyperbolic Dehn Filling 4.4 Local Rigidity 4.5 Sequences of Cone Manifolds 4.5.1 Compactness Theorem 4.5.2 Cone-Thin Part 4.5.3 Decreasing Cone Angles: Global Rigidity 4.5.4 Increasing Cone Angles 4.6 Examples 4.6.1 Hyperbolic Two-Bridge Knots and Links 4.6.2 Montesinos Links 4.6.3 A Cusp Opening 4.6.4 Borromean Rings 4.6.5 Borromean Rings Revisited: Spherical Structures References 5 A Survey of the Thurston Norm 5.1 Introduction Organization Conventions and Notation 5.2 Foundations of the Thurston Norm 5.2.1 Thurston Norm 5.2.2 Norm Balls and Fibrations Over a Circle 5.2.3 Norm-Minimizing Surfaces and Codimension-1 Foliations 5.2.4 Singular and Gromov Norms 5.3 Alexander and Teichmüller Polynomials 5.3.1 Alexander Polynomial 5.3.2 Abelian Torsion 5.3.3 Teichmüller Polynomial 5.4 Seiberg–Witten Invariant 5.4.1 Seiberg–Witten Theory 5.4.2 Seiberg–Witten Invariant of a 3-Manifold 5.4.3 Complexity of Surfaces in a 4-Manifold 5.4.4 Harmonic Norm 5.5 Floer Homology 5.5.1 Heegaard Floer Homology 5.5.2 Knot Floer Homology 5.6 Torsion Invariants 5.6.1 Reidemeister Torsion 5.6.2 Twisted Alexander Polynomials 5.6.3 Higher-Order Alexander Polynomials 5.6.4 L2-Alexander Torsion 5.7 Triangulations 5.7.1 Thurston Norm Via Normal Surfaces 5.7.2 Z / 2 Z-Thurston Norm and Complexity of 3-Manifolds 5.8 Profinite Rigidity 5.9 Conjectures and Questions 5.9.1 Realization Problem 5.9.2 Complexity Functions for Circle Bundles 5.9.3 Twisted Alexander Polynomials for Hyperbolic Knots 5.9.4 Higher-Order Alexander Polynomials and the Knot Genus 5.9.5 Lower Bounds on Complexity of 3-Manifolds 5.9.6 Thurston Norm Balls of Finite Covers References 6 From Hyperbolic Dehn Filling to Surgeries inRepresentation Varieties 6.1 Introduction 6.2 Hyperbolic Dehn Surgery 6.2.1 Dehn Surgery 6.2.2 Hyperbolic Dehn Surgery 6.2.3 Haken Manifolds and Thurston's Uniformization 6.3 Deformations of Hyperbolic Structures by Bending 6.4 Higher Teichmüller Theory 6.4.1 The Teichmüller Space 6.4.2 Higher Teichmüller Spaces 6.4.3 -Positive Representations 6.5 Non-abelian Hodge Theory 6.5.1 Moduli Spaces of G-Higgs Bundles 6.5.2 G-Hitchin Equations 6.5.3 The Non-abelian Hodge Correspondence 6.6 Surgeries in Representation Varieties-General Theory 6.6.1 Topological Gluing Construction 6.6.2 Gluing in Exceptional Components of the Moduli Space 6.6.2.1 Parabolic GL( n,C )-Higgs Bundles 6.6.3 Complex Connected Sum of Riemann Surfaces 6.6.4 Gluing at the Level of Solutions to Hitchin's Equations 6.6.4.1 The Local Model 6.6.4.2 Approximate Solutions of the SL(2,R)-Hitchin Equations 6.6.5 Approximate Solutions to the G-Hitchin Equations 6.6.6 The Contraction Mapping Argument 6.6.7 Correcting an Approximate Solution to an Exact Solution 6.6.8 Topological Invariants 6.7 Examples: Model Higgs Bundles in Exceptional Components of Orthogonal Groups 6.7.1 SO( p,q )-Higgs Bundle Data 6.7.2 Hitchin Equations for Orthogonal Groups 6.7.3 Model Parabolic SL( 2,R )-Higgs Bundles 6.7.4 Parabolic SO( p,p+1 )-Models 6.7.4.1 Models via the Irreducible Representation SL( 2,R )-3mu→SO( p,p+1 ) 6.7.4.2 Models via the General Map 6.7.5 Gauge-Theoretic Gluing of Parabolic SO( p,p+1 )-Higgs Bundles 6.7.6 Model Representations in the Exceptional Components of R( SO( p,p+1 ) ) 6.7.7 Model Representations and Positivity References 7 Acute Geodesic Triangulations of Manifolds 7.1 Introduction 7.2 In Dimension Three and Higher 7.2.1 Polytopes and Dehn–Sommerville Equations 7.2.2 Spherical Complexes 7.2.3 Dimension Four and Five 7.2.4 R3, S3 and More 7.3 Dimension Two: General Riemannian and Flat Cone Metrics 7.3.1 Riemannian Surfaces 7.3.2 Euclidean and Flat Cone Surfaces 7.3.3 Parametrizing Equilateral Triangulations 7.3.4 Aperiodic Tilings 7.4 Round Spheres 7.4.1 Acute Triangulations from Right-Angled Hyperbolic 3-Polytopes 7.4.2 The Koebe–Andreev–Thurston Theorem and Its Generalizations 7.4.3 CAT(κ) Spaces References 8 Signature Calculation of the Area Hermitian Form on Some Spaces of Polygons 8.1 Introduction 8.2 Basic Facts on Hermitian Forms 8.3 Spaces of Polygons and Signature Calculation 8.3.1 The Area Hermitian Form and the Formula for Its Signature 8.3.2 The Case n=2 8.3.3 A Special Family of Polygons 8.3.4 Cutting-Gluing Operations 8.3.5 Signature Calculation References 9 Equilateral Convex Triangulations of R P2 with Three Conical Points of Equal Defect 9.1 Introduction 9.2 Triangulations of R P2 with Three Marked Points with Defects 2π/3 9.3 Moduli Space of Flat Metrics on S2 with Six Pair-Wise Centrally Symmetric Conical Points of Equal Defect 9.4 A Parametrization of Equilateral Triangulations of S2 with Six Centrally-Symmetric Points with Defects 2π/3 9.5 Examples and Computer Computations References 10 Combination Theorems in Groups, Geometry and Dynamics 10.1 Introduction 10.2 Klein–Maskit Combination for Kleinian Groups 10.3 Simultaneous Uniformization and Quasi-Fuchsian Groups 10.3.1 Topologies on Space of Representations 10.3.2 Simultaneous Uniformization 10.3.3 Geodesic Laminations 10.4 Thurston's Combination Theorem for Haken Manifolds 10.4.1 Non-fibered Haken 3-Manifolds 10.4.2 The Double Limit Theorem 10.5 Combination Theorems in Geometric Group Theory:Hyperbolic Groups 10.5.1 Trees of Spaces 10.5.2 Metric Bundles 10.5.2.1 Ladders 10.5.2.2 Idea Behind the Proof of Theorem 10.18 10.5.3 Relatively Hyperbolic Combination Theorems 10.5.3.1 Relatively Hyperbolic Combination Theorem Using Acylindricity 10.5.3.2 Relatively Hyperbolic Combination Theorem Using Flaring 10.5.4 Effective Quasiconvexity and Flaring 10.6 Combination Theorems in Geometric Group Theory:Cubulations 10.7 Holomorphic Dynamics and Polynomial Mating 10.7.1 Historical Comments 10.7.2 Mating of Polynomials 10.8 Combining Rational Maps and Kleinian Groups 10.8.1 Mating Anti-polynomials with Reflection Groups 10.8.1.1 Schwarz Reflection Maps and Motivating Examples 10.8.1.2 Necklace Reflection Groups 10.8.1.3 Conformal Mating of Anti-polynomials and Necklace Groups 10.8.1.4 Examples of the Mating Phenomenon 10.8.1.5 The General Theorem 10.8.2 Mating Polynomials with Kleinian Groups 10.8.2.1 The Fuchsian Case 10.8.2.2 The Case of Bers Boundary Groups References 11 On the Pullback Relation on Curves Induced by a Thurston Map 11.1 Introduction 11.2 Conventions and Notation 11.3 Non-dynamical Properties of f 11.3.1 Known General Results 11.3.2 Mechanisms for Triviality of f 11.3.3 Computation of f 11.3.4 When Each Curve Has a Nontrivial Preimage 11.4 Dynamical Properties 11.4.1 General Properties 11.4.2 Bounds on the Size of the Attractor 11.4.3 Examples with Symmetries 11.4.4 Maps with the Same Fundamental Invariants 11.4.5 Expanding vs. Nonexpanding Maps References 12 The Pullback Map on Teichmüller Space Induced from a Thurston Map 12.1 Thurston's Characterization Theorem 12.1.1 Levy Cycles 12.1.2 An Application to Matings 12.2 Further Developments 12.2.1 Canonical Obstructions 12.2.2 The Extension to a Boundary 12.2.3 The g-Map and the Hurwitz Space 12.2.4 The Pullback Map Near a Fixed Point 12.2.5 Other Pullback Invariants 12.2.6 Examples 12.2.7 Eigenvalues of the Pullback Map References 13 A Classification of Postcritically Finite Newton Maps 13.1 Introduction 13.2 Thurston Theory on Branched Covers 13.3 Extending Maps on Finite Graphs 13.4 Abstract Extended Newton Graph 13.5 Equivalence of Abstract Extended Newton Graphs 13.5.1 Making Ray Endpoints and Accesses Coincide 13.5.2 Equivalence on Newton Ray Grand Orbits 13.5.3 Equivalence on Abstract Extended Newton Graphs 13.6 Newton Maps from Abstract Extended Newton Graphs 13.6.1 Contradiction for the Case ·≠0 13.6.2 Contradiction for the Case ·= 0 13.7 Proof of the Classification Theorem References 14 The Development of the Theory of Automatic Groups 14.1 Introduction 14.1.1 Historical Background 14.1.2 Mathematical Background and Notation 14.2 Automatic Groups 14.2.1 Definition of an Automatic Group 14.2.2 Basic Properties of Automatic Groups 14.2.3 Basic Examples and Non-examples 14.2.3.1 Virtually Abelian Groups, Soluble Groups 14.2.3.2 Hyperbolic Groups 14.2.3.3 Fundamental Groups of Compact 3-Manifolds 14.3 Computing with Automatic Groups 14.3.1 Building Automatic Structures 14.3.2 Calculation Using the Automatic Structure 14.4 Group Actions and Negative Curvature 14.5 Some Automatic and Biautomatic Families 14.5.1 Braid Groups, Artin Groups and Mapping Class Groups 14.5.2 Coxeter Groups 14.6 Open Problems References 15 Geometry and Combinatorics via Right-Angled Artin Groups 15.1 Introduction 15.1.1 Scope of This Survey 15.1.2 Notation and Terminology 15.1.3 A Remark About Generators 15.2 The Cohomology Ring of a Right-Angled Artin Group 15.2.1 The Topology of the Salvetti Complex 15.2.2 Vector Spaces with a Vector-Space Valued Pairing 15.2.3 The Cohomology Ring of A() Determines 15.3 Translating Between Group Theory and Combinatorics 15.3.1 Elementary Properties 15.3.2 k-Colorability 15.3.3 Hamiltonicity 15.3.4 Graph Expanders 15.3.5 Graph Automorphisms 15.3.6 Some Further Entries in the Combinatorics–Algebra Dictionary 15.3.7 Usefulness Beyond Group Theory and Combinatorics 15.3.7.1 Complexity of Problems in Combinatorial Group Theory 15.3.7.2 Hamiltonicity Testing 15.3.7.3 Linear Algebraic Detection of Graph Expanders 15.3.7.4 Interactive Proof Systems 15.3.7.5 Group-Based Cryptosystems 15.4 The Extension Graph and Its Properties 15.4.1 Basic Properties of the Extension Graph 15.4.2 The Extension Graph and Subgroups 15.4.3 A Characterization of Cographs via Right-Angled Artin Groups and the Geometry of the Extension Graph 15.4.4 More on the Geometry of the Extension Graph 15.4.5 The Extension Graph as a Quasi-Isometry and Commensurability Invariant 15.5 Further Directions References Index