دسترسی نامحدود
برای کاربرانی که ثبت نام کرده اند
برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید
در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید
برای کاربرانی که ثبت نام کرده اند
درصورت عدم همخوانی توضیحات با کتاب
از ساعت 7 صبح تا 10 شب
ویرایش:
نویسندگان: Alan J. Lutenegger
سری:
ISBN (شابک) : 9781003002017, 9780367758745
ناشر: CRC Press
سال نشر: 2021
تعداد صفحات: 371
زبان: English
فرمت فایل : PDF (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود)
حجم فایل: 21 مگابایت
در صورت تبدیل فایل کتاب In Situ Testing Methods in Geotechnical Engineering به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.
توجه داشته باشید کتاب روش های تست درجا در مهندسی ژئوتکنیک نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.
Cover Half Title Title Page Copyright Page Table of Contents Author 1 Introduction to In Situ Testing 1.1 Introduction 1.2 Role of In Situ Testing In Site Investigations 1.3 Advantages and Limitations of In Situ Tests 1.3.1 Advantages of In Situ Tests 1.3.1.1 Testing Soils that are Difficult to Sample 1.3.1.2 Determining Soil Properties that are Difficult to Measure by Laboratory Methods 1.3.1.3 Testing a Larger Volume of Soil 1.3.1.4 Avoiding Difficulties with Sampling and Laboratory Testing 1.3.1.5 Obtaining Near Continuous Profiling 1.3.1.6 Reduced Testing Time 1.3.1.7 Rapid Data Reduction 1.3.1.8 Assessing the Influence of Scale or Macro-Fabric on Soil Behavior 1.3.1.9 Conducting Tests in a Field Environment 1.3.1.10 Cost Savings 1.3.2 Limitations of In Situ Tests 1.3.2.1 Unknown Boundary Conditions 1.3.2.2 Unknown Drainage Conditions 1.3.2.3 Unknown Disturbance 1.3.2.4 Modes of Deformation and Failure May be Unique 1.3.2.5 Strain Rates or Loading Rates are Higher than Laboratory and Full-Scale 1.3.2.6 Nature of the Soil Being Tested is Unknown 1.3.2.7 Effects of Environment Change on Soil Behavior are Difficult to Assess 1.3.2.8 Typical Difficulties with Field Work 1.4 Applications of In Situ Tests 1.4.1 Stratigraphic Profiling 1.4.2 Specific Property Measurement 1.4.3 Prototype Modeling 1.5 Interpretation of In Situ Test Results 1.6 Using In Situ Tests in Design 1.6.1 Indirect Design 1.6.2 Direct Design References 2 Standard Penetration Test (SPT) 2.1 Introduction 2.2 Background 2.3 Mechanics of the Test 2.4 Equipment 2.4.1 Hammer 2.4.2 Drill Rods 2.4.3 Split Barrel Sampler 2.5 Test Procedures 2.6 Factors Affecting Test Results 2.6.1 Energy Delivered to the Sampler 2.6.2 SPT Hammer Energy Calibration 2.6.3 Other Factors Affecting SPT Results 2.6.3.1 Diameter of Drill Rods 2.6.3.2 Drill Rod Length 2.6.3.3 Sampler Dimensions 2.6.3.4 Diameter of Borehole 2.6.3.5 Method of Drilling/Drilling Fluid 2.6.3.6 Cleanout of the Borehole 2.6.3.7 Rate of Testing 2.6.3.8 Seating of the Spoon 2.6.3.9 Condition of the Drive Shoe 2.6.3.10 Summary 2.7 Corrections to SPT Blow Counts 2.7.1 Corrections for Hammer Energy, Equipment, and Drilling: N to N[sub(60)] 2.7.2 Correction for Overburden Stress in Sands: N[sub(60)] to (N[sub(1)])60 2.8 Interpretation of Soil Properties 2.8.1 SPT in Coarse-Grained Soils 2.8.1.1 Relative Density 2.8.1.2 Friction Angle 2.8.1.3 Soil Elastic Modulus 2.8.1.4 Constrained Modulus 2.8.1.5 Small-Strain Shear Modulus 2.8.1.7 Liquefaction Potential 2.8.2 SPT in Fine-Grained Soils 2.8.2.1 Undrained Shear Strength 2.8.2.2 Stress History 2.8.2.3 In Situ Lateral Stress 2.8.2.4 Soil Elastic Modulus 2.8.2.5 Small-Strain Shear Modulus 2.8.3 SPT in Soft/Weak Rock 2.9 Improvements to SPT Practice 2.9.1 SPT-T Test 2.9.2 Seismic SPT 2.9.3 Measurement of Penetration Record 2.9.4 Incremental Penetration Ratio 2.9.5 Differential Penetration Record 2.10 Large Penetration Test 2.11 Becker Penetration Test 2.12 SPT in Geotechnical Design 2.12.1 Shallow Foundations 2.12.2 Deep Foundations 2.13 Summary of SPT References 3 Dynamic Cone Penetration Test (DCP) 3.1 Introduction 3.2 Mechanics 3.3 Equipment 3.4 Test Procedures 3.4.1 Light DCP 3.4.1.1 Sowers Cone 3.4.1.2 ASTM Light “Pavement” DCP 3.4.1.3 Mackintosh & JKR Probe 3.4.1.4 Lutenegger Drive Cone 3.4.2 Medium DCP 3.4.3 Heavy DCP 3.4.4 Super Heavy DCP 3.5 Texas Cone Penetrometer 3.6 Swedish Ram Sounding Test 3.7 Factors Affecting Test Results 3.8 Presentation of Tests Results 3.8.1 Incremental Penetration Resistance 3.8.2 Cumulative Penetration Resistance 3.8.3 Penetration Distance per Hammer Blow 3.8.4 Dynamic Penetration Resistance 3.9 Interpretation of Test Results 3.9.1 Correlations to SPT 3.9.2 Correlations to CPT 3.9.3 Direct Correlations to Soil Properties 3.9.3.1 Relative Density of Sands 3.9.3.2 Undrained Shear Strength of Clays 3.9.3.3 California Bearing Ratio 3.9.3.4 Resilient Modulus 3.9.3.5 Compaction Control 3.10 Summary OF DCP References 4 Cone Penetration (CPT) and Piezocone (CPTU) Tests 4.1 Introduction 4.2 Mechanics of the Test – CPT/CPTU 4.2.1 Mechanical Cones 4.2.2 Electric Cones 4.2.3 Electric Piezocone 4.3 Deploying Cone Penetrometers 4.3.1 Self-Contained Truck 4.3.2 Drill Rig 4.3.3 Light-Duty Trailer 4.3.4 Portable Reaction Frame 4.4 Test Procedures 4.5 Factors Affecting Test Results 4.5.1 Cone Design 4.5.2 Cone Diameter 4.5.3 Rate of Penetration 4.5.4 Surface Roughness of Friction Sleeve 4.6 Data Reduction and Presentation of Results 4.7 Interpretation of Results for Stratigraphy 4.7.1 Soil Identification from q[sub(c)], f[sub(s)], and R[sub(f)] 4.7.2 Soil Identification from q[sub(t)], B[sub(q)], and R[sub(f)] 4.7.3 Soil Identification from Q[sub(t)], B[sub(q)], and F[sub(r)] 4.7.4 Soil Behavioral Type from CPTU, I[sub(C)], and I[sub(CRW)] 4.8 Interpretation of Test Results in Coarse-Grained Soils 4.8.1 Relative Density 4.8.2 State Parameter 4.8.3 Shear Strength (Drained Friction Angle) 4.8.3.1 ȹ\' from Deep Bearing Capacity Theory 4.8.3.2 ȹ\' from State Parameter 4.8.4 Stress History and In Situ Stress 4.8.5 Elastic Modulus 4.8.6 Constrained Modulus 4.8.7 Shear Wave Velocity and Small-Strain Shear Modulus 4.8.7.1 Shear Wave Velocity and Shear Modulus from qc 4.8.8 Liquefaction Potential 4.9 Interpretation of CPT Results in Fine-Grained Soils 4.9.1 Undrained Shear Strength 4.9.1.1 s[sub(u)] from qs[sub(c)] 4.9.1.2 s[sub(u)] from qs[sub(T)] 4.9.1.3 s[sub(u)] from u 4.9.1.4 s[sub(u)] from qs[sub(T)] and u 4.9.1.5 s[sub(u)] from Q 4.9.1.6 s[sub(u)] from f[sub(s)] 4.9.1.7 s[sub(u)] from Ϭ\'s[sub(p)] 4.9.2 Sensitivity 4.9.3 Stress history – Preconsolidation Stress, s\'P 4.9.3.1 Ϭ\'[sub(P)] from q[sub(c)] 4.9.3.2 Ϭ\'[sub(P)] from q[sub(t)] 4.9.3.3 Ϭ\'[sub(P)] from Δ[sub(u)] 4.9.3.4 Ϭ\'[sub(P)] from q[sub(t)] and u 4.9.4 Stress History – OCR 4.9.4.1 OCR from q[sub(c)] 4.9.4.2 OCR from q[sub(t)] and u 4.9.4.3 OCR from Pore Pressure Difference 4.9.5 In Situ Lateral Stress 4.9.5.1 K[sub(o)] from OCR 4.9.5.2 Empirical Correlations to q[sub(t)] and Δ[sub(u)] 4.9.6 Shear Wave Velocity and Small-Strain Shear Modulus 4.9.6.1 Shear Wave Velocity from q[sub(c)] and q[sub(t)] 4.9.6.2 Shear Wave Velocity from f[sub(s)] 4.9.6.3 Shear Modulus from q[sub(c)] and q[sub(t)] 4.9.7 Constrained Modulus 4.9.8 Coefficient of Consolidation 4.9.9 Hydraulic Conductivity 4.10 Advantages and Limitations of CPT/CPTU 4.11 CPT-SPT Correlations 4.12 CPT/CPTU in Foundation Design 4.12.1 Shallow Foundations 4.12.2 Deep Foundations 4.13 Summary of CPT/CPTU References 5 Field Vane Test (FVT) 5.1 Introduction 5.2 Mechanics 5.3 Equipment 5.3.1 Unprotected Vane Through Casing 5.3.2 Protected Rods and Unprotected Vane 5.3.3 Protected Rods and Protected Vane 5.3.4 Unprotected Rods and Unprotected Vane with Slip Coupling 5.3.5 Vanes 5.4 Test Procedures 5.5 Factors Affecting Test Results 5.5.1 Installation Effects 5.5.1.1 Disturbance 5.5.1.2 Insertion Pore Water Pressures 5.5.2 Delay (Consolidation) Time 5.5.3 Rate of Shearing 5.5.4 Progressive Failure 5.5.5 Vane Size 5.5.6 Vane Shape 5.6 Interpretation of Undrained Strength from FVT 5.7 Anisotropic Analysis 5.8 Measuring Postpeak Strength 5.9 Field Vane Correction Factors 5.10 Interpretation of Stress History from FVT 5.11 Summary of FVT References 6 Dilatometer Test (DMT) 6.1 Introduction 6.2 Mechanics 6.3 Equipment 6.4 Test Procedure 6.4.1 Lift-off Pressure 6.4.2 1 mm Expansion Pressure 6.4.3 Recontact Pressure 6.5 Data Reduction 6.5.1 Lift-off and Penetration Pore Pressures 6.5.2 1 mm Expansion Pressure 6.5.3 Recontact Pressure 6.6 Presentation of Test Results 6.7 Interpretation of Test Results 6.7.1 Evaluating Stratigraphy 6.7.2 Interpretation of DMT Results in Fine-Grained Soils 6.7.2.1 Undrained Shear Strength 6.7.2.2 Stress History – OCR 6.7.2.3 Preconsolidation Stress 6.7.2.4 Lateral Stresses 6.7.2.5 Constrained Modulus 6.7.2.6 Elastic Modulus 6.7.2.7 Small-Strain Shear Modulus 6.7.2.8 Liquidity Index 6.7.2.9 California Bearing Ratio 6.7.2.10 Coefficient of Consolidation 6.7.3 Interpretation of DMT Results in Coarse-Grained Soils 6.7.3.1 Relative Density (D[sub(r)]) 6.7.3.2 State Parameter 6.7.3.3 Drained Friction Angle 6.7.3.4 In Situ Stresses 6.7.3.5 Stress History 6.7.3.6 Constrained Modulus 6.7.3.7 Elastic Modulus 6.7.3.8 Small-Strain Shear Modulus 6.7.3.9 Coefficient of Subgrade Reaction 6.7.3.10 Liquefaction Potential 6.8 Seismic Dilatometer 6.9 Design Applications 6.10 Summary of DMT References 7 Pressuremeter Test (PMT) 7.1 Introduction 7.2 Mechanics of the Test 7.3 Pressuremeter Equipment 7.3.1 Prebored Pressuremeters 7.3.1.1 Tri-Cell Probe 7.3.1.2 Mono-Cell Probe 7.3.2 Self-Boring Pressuremeters 7.3.3 Full-Displacement (Cone) Pressuremeters 7.3.4 Push-in Pressuremeter 7.4 Creating a Borehole for the PMT 7.5 Test Procedures 7.5.1 Test Procedure A – Equal-Pressure Increment Method 7.5.2 Test Procedure B – Equal-Volume Increment Method 7.5.3 Continuous Loading Tests 7.5.4 Holding Tests 7.6 Data Reduction 7.6.1 Corrected Pressure-Volume Curve 7.6.1.1 Initial Pressure, P[sub(O)] 7.6.1.2 Creep Pressure, P[sub(f)] 7.6.1.3 Limit Pressure, P[sub(L)] 7.6.1.4 Net Limit Pressure, P[sub(L)][sup(⁎)] 7.6.1.5 Pressuremeter Modulus, E[sub(m)] 7.6.1.6 Unload-Reload Modulus, E[sub(UR)] 7.6.2 Creep Curve 7.6.3 Relationships Between PMT Parameters 7.7 Factors Affecting Test Results 7.7.1 Method of Installation 7.7.2 Calibration of Membrane 7.7.3 Volume Losses 7.7.4 Geometry of Cutter (SBPMT) 7.7.5 Rate of Installation (SBPMT) 7.8 Interpretation of Tests Results in Fine-Grained Soils 7.8.1 In Situ Horizontal Stress 7.8.2 Undrained Shear Strength 7.8.2.1 Theoretical Evaluation 7.8.2.2 Empirical Approach 7.8.3 Preconsolidation Stress 7.8.4 Small-Strain Shear Modulus 7.9 Interpretation of Test Results in Coarse-Grained Soils 7.10 Pressuremeter Testing in Rock 7.11 Correlations with Other In Situ Tests 7.12 Applications to Design 7.12.1 Design of Shallow Foundations 7.12.1.1 Bearing Capacity 7.12.1.2 Settlement 7.12.2 Deep Foundations 7.12.2.1 Ultimate Axial Load of Deep Foundations 7.12.2.2 Laterally Loaded Shafts and Piles 7.13 Summary of PMT References 8 Borehole Shear Test (BST) 8.1 Introduction 8.2 Mechanics 8.3 Equipment 8.3.1 Shear Head 8.3.2 Control Console 8.3.3 Shear Force Reaction Base Plate 8.4 Test Procedures 8.4.1 Multistage Testing 8.4.2 Single-Stage “Fresh” Testing 8.5 Borehole Preparation 8.6 Interpretation of Test Results 8.7 Range of Soil Applicability 8.8 Factors Affecting Test Results 8.9 Interface Shear Tests 8.10 Comparison with Laboratory Tests 8.11 Equipment Modifications 8.12 Applications of BST for Design 8.13 Advantages and Limitations 8.13.1 Advantages 8.13.2 Limitations 8.14 Summary of BST References 9 Plate Load Test (PLT) and Screw Plate Load Test (SPLT) 9.1 Introduction 9.2 Plate Load Test 9.2.1 Equipment 9.2.2 Test Procedures 9.2.2.1 Tests on the Ground Surface 9.2.2.2 Tests in an Excavation/Test Pit 9.2.2.3 Tests in Lined Borings 9.2.2.4 Horizontal Plate Load Tests 9.3 Screw Plate Tests 9.3.1 Equipment 9.3.2 Test Procedures 9.4 Presentation of Test Results 9.5 Interpretation of Results 9.5.1 Subgrade Reaction Modulus 9.5.2 Elastic Modulus 9.5.2.1 Plate Load Test 9.5.2.2 Screw Plate Test 9.5.3 Shear Modulus 9.5.4 Undrained Shear Strength of Clays 9.5.5 Coefficient of Consolidation 9.6 Plate Load as a Prototype Footing 9.7 Summary of PLT and SPLT References 10 Other In Situ Tests 10.1 Introduction 10.2 Large-Scale In-Place Shear Box Tests 10.2.1 Background 10.2.2 Test Equipment 10.2.3 Test Procedures 10.2.4 Results and Interpretation 10.3 Hydraulic Fracture Tests (HFTs) 10.3.1 Background 10.3.2 Test Equipment 10.3.2.1 Tests with Push-in Piezometer 10.3.2.2 Tests in an Open Borehole 10.3.3 Test Procedures 10.3.4 Results and Interpretation 10.4 Push-in Earth Pressure Cells 10.4.1 Background 10.4.2 Test Equipment 10.4.3 Test Procedures 10.4.4 Results and Interpretation References Index