ورود به حساب

نام کاربری گذرواژه

گذرواژه را فراموش کردید؟ کلیک کنید

حساب کاربری ندارید؟ ساخت حساب

ساخت حساب کاربری

نام نام کاربری ایمیل شماره موبایل گذرواژه

برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید


09117307688
09117179751

در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید

دسترسی نامحدود

برای کاربرانی که ثبت نام کرده اند

ضمانت بازگشت وجه

درصورت عدم همخوانی توضیحات با کتاب

پشتیبانی

از ساعت 7 صبح تا 10 شب

دانلود کتاب In Situ Testing Methods in Geotechnical Engineering

دانلود کتاب روش های تست درجا در مهندسی ژئوتکنیک

In Situ Testing Methods in Geotechnical Engineering

مشخصات کتاب

In Situ Testing Methods in Geotechnical Engineering

ویرایش:  
نویسندگان:   
سری:  
ISBN (شابک) : 9781003002017, 9780367758745 
ناشر: CRC Press 
سال نشر: 2021 
تعداد صفحات: 371 
زبان: English 
فرمت فایل : PDF (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود) 
حجم فایل: 21 مگابایت 

قیمت کتاب (تومان) : 47,000



ثبت امتیاز به این کتاب

میانگین امتیاز به این کتاب :
       تعداد امتیاز دهندگان : 11


در صورت تبدیل فایل کتاب In Situ Testing Methods in Geotechnical Engineering به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.

توجه داشته باشید کتاب روش های تست درجا در مهندسی ژئوتکنیک نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.


توضیحاتی درمورد کتاب به خارجی



فهرست مطالب

Cover
Half Title
Title Page
Copyright Page
Table of Contents
Author
1 Introduction to In Situ Testing
	1.1 Introduction
	1.2 Role of In Situ Testing In Site Investigations
	1.3 Advantages and Limitations of In Situ Tests
		1.3.1 Advantages of In Situ Tests
			1.3.1.1 Testing Soils that are Difficult to Sample
			1.3.1.2 Determining Soil Properties that are Difficult to Measure by Laboratory Methods
			1.3.1.3 Testing a Larger Volume of Soil
			1.3.1.4 Avoiding Difficulties with Sampling and Laboratory Testing
			1.3.1.5 Obtaining Near Continuous Profiling
			1.3.1.6 Reduced Testing Time
			1.3.1.7 Rapid Data Reduction
			1.3.1.8 Assessing the Influence of Scale or Macro-Fabric on Soil Behavior
			1.3.1.9 Conducting Tests in a Field Environment
			1.3.1.10 Cost Savings
		1.3.2 Limitations of In Situ Tests
			1.3.2.1 Unknown Boundary Conditions
			1.3.2.2 Unknown Drainage Conditions
			1.3.2.3 Unknown Disturbance
			1.3.2.4 Modes of Deformation and Failure May be Unique
			1.3.2.5 Strain Rates or Loading Rates are Higher than Laboratory and Full-Scale
			1.3.2.6 Nature of the Soil Being Tested is Unknown
			1.3.2.7 Effects of Environment Change on Soil Behavior are Difficult to Assess
			1.3.2.8 Typical Difficulties with Field Work
	1.4 Applications of In Situ Tests
		1.4.1 Stratigraphic Profiling
		1.4.2 Specific Property Measurement
		1.4.3 Prototype Modeling
	1.5 Interpretation of In Situ Test Results
	1.6 Using In Situ Tests in Design
		1.6.1 Indirect Design
		1.6.2 Direct Design
	References
2 Standard Penetration Test (SPT)
	2.1 Introduction
	2.2 Background
	2.3 Mechanics of the Test
	2.4 Equipment
		2.4.1 Hammer
		2.4.2 Drill Rods
		2.4.3 Split Barrel Sampler
	2.5 Test Procedures
	2.6 Factors Affecting Test Results
		2.6.1 Energy Delivered to the Sampler
		2.6.2 SPT Hammer Energy Calibration
		2.6.3 Other Factors Affecting SPT Results
			2.6.3.1 Diameter of Drill Rods
			2.6.3.2 Drill Rod Length
			2.6.3.3 Sampler Dimensions
			2.6.3.4 Diameter of Borehole
			2.6.3.5 Method of Drilling/Drilling Fluid
			2.6.3.6 Cleanout of the Borehole
			2.6.3.7 Rate of Testing
			2.6.3.8 Seating of the Spoon
			2.6.3.9 Condition of the Drive Shoe
			2.6.3.10 Summary
	2.7 Corrections to SPT Blow Counts
		2.7.1 Corrections for Hammer Energy, Equipment, and Drilling: N to N[sub(60)]
		2.7.2 Correction for Overburden Stress in Sands: N[sub(60)] to (N[sub(1)])60
	2.8 Interpretation of Soil Properties
		2.8.1 SPT in Coarse-Grained Soils
			2.8.1.1 Relative Density
			2.8.1.2 Friction Angle
			2.8.1.3 Soil Elastic Modulus
			2.8.1.4 Constrained Modulus
			2.8.1.5 Small-Strain Shear Modulus
			2.8.1.7 Liquefaction Potential
		2.8.2 SPT in Fine-Grained Soils
			2.8.2.1 Undrained Shear Strength
			2.8.2.2 Stress History
			2.8.2.3 In Situ Lateral Stress
			2.8.2.4 Soil Elastic Modulus
			2.8.2.5 Small-Strain Shear Modulus
		2.8.3 SPT in Soft/Weak Rock
	2.9 Improvements to SPT Practice
		2.9.1 SPT-T Test
		2.9.2 Seismic SPT
		2.9.3 Measurement of Penetration Record
		2.9.4 Incremental Penetration Ratio
		2.9.5 Differential Penetration Record
	2.10 Large Penetration Test
	2.11 Becker Penetration Test
	2.12 SPT in Geotechnical Design
		2.12.1 Shallow Foundations
		2.12.2 Deep Foundations
	2.13 Summary of SPT
	References
3 Dynamic Cone Penetration Test (DCP)
	3.1 Introduction
	3.2 Mechanics
	3.3 Equipment
	3.4 Test Procedures
		3.4.1 Light DCP
			3.4.1.1 Sowers Cone
			3.4.1.2 ASTM Light “Pavement” DCP
			3.4.1.3 Mackintosh & JKR Probe
			3.4.1.4 Lutenegger Drive Cone
		3.4.2 Medium DCP
		3.4.3 Heavy DCP
		3.4.4 Super Heavy DCP
	3.5 Texas Cone Penetrometer
	3.6 Swedish Ram Sounding Test
	3.7 Factors Affecting Test Results
	3.8 Presentation of Tests Results
		3.8.1 Incremental Penetration Resistance
		3.8.2 Cumulative Penetration Resistance
		3.8.3 Penetration Distance per Hammer Blow
		3.8.4 Dynamic Penetration Resistance
	3.9 Interpretation of Test Results
		3.9.1 Correlations to SPT
		3.9.2 Correlations to CPT
		3.9.3 Direct Correlations to Soil Properties
			3.9.3.1 Relative Density of Sands
			3.9.3.2 Undrained Shear Strength of Clays
			3.9.3.3 California Bearing Ratio
			3.9.3.4 Resilient Modulus
			3.9.3.5 Compaction Control
	3.10 Summary OF DCP
	References
4 Cone Penetration (CPT) and Piezocone (CPTU) Tests
	4.1 Introduction
	4.2 Mechanics of the Test – CPT/CPTU
		4.2.1 Mechanical Cones
		4.2.2 Electric Cones
		4.2.3 Electric Piezocone
	4.3 Deploying Cone Penetrometers
		4.3.1 Self-Contained Truck
		4.3.2 Drill Rig
		4.3.3 Light-Duty Trailer
		4.3.4 Portable Reaction Frame
	4.4 Test Procedures
	4.5 Factors Affecting Test Results
		4.5.1 Cone Design
		4.5.2 Cone Diameter
		4.5.3 Rate of Penetration
		4.5.4 Surface Roughness of Friction Sleeve
	4.6 Data Reduction and Presentation of Results
	4.7 Interpretation of Results for Stratigraphy
		4.7.1 Soil Identification from q[sub(c)], f[sub(s)], and R[sub(f)]
		4.7.2 Soil Identification from q[sub(t)], B[sub(q)], and R[sub(f)]
		4.7.3 Soil Identification from Q[sub(t)], B[sub(q)], and F[sub(r)]
		4.7.4 Soil Behavioral Type from CPTU, I[sub(C)], and I[sub(CRW)]
	4.8 Interpretation of Test Results in Coarse-Grained Soils
		4.8.1 Relative Density
		4.8.2 State Parameter
		4.8.3 Shear Strength (Drained Friction Angle)
			4.8.3.1 ȹ\' from Deep Bearing Capacity Theory
			4.8.3.2 ȹ\' from State Parameter
		4.8.4 Stress History and In Situ Stress
		4.8.5 Elastic Modulus
		4.8.6 Constrained Modulus
		4.8.7 Shear Wave Velocity and Small-Strain Shear Modulus
			4.8.7.1 Shear Wave Velocity and Shear Modulus from qc
		4.8.8 Liquefaction Potential
	4.9 Interpretation of CPT Results in Fine-Grained Soils
		4.9.1 Undrained Shear Strength
			4.9.1.1 s[sub(u)] from qs[sub(c)]
			4.9.1.2 s[sub(u)] from qs[sub(T)]
			4.9.1.3 s[sub(u)] from u
			4.9.1.4 s[sub(u)] from qs[sub(T)] and u
			4.9.1.5 s[sub(u)] from Q
			4.9.1.6 s[sub(u)] from f[sub(s)]
			4.9.1.7 s[sub(u)] from Ϭ\'s[sub(p)]
		4.9.2 Sensitivity
		4.9.3 Stress history – Preconsolidation Stress, s\'P
			4.9.3.1 Ϭ\'[sub(P)] from q[sub(c)]
			4.9.3.2 Ϭ\'[sub(P)] from q[sub(t)]
			4.9.3.3 Ϭ\'[sub(P)] from Δ[sub(u)]
			4.9.3.4 Ϭ\'[sub(P)] from q[sub(t)] and u
		4.9.4 Stress History – OCR
			4.9.4.1 OCR from q[sub(c)]
			4.9.4.2 OCR from q[sub(t)] and u
			4.9.4.3 OCR from Pore Pressure Difference
		4.9.5 In Situ Lateral Stress
			4.9.5.1 K[sub(o)] from OCR
			4.9.5.2 Empirical Correlations to q[sub(t)] and Δ[sub(u)]
		4.9.6 Shear Wave Velocity and Small-Strain Shear Modulus
			4.9.6.1 Shear Wave Velocity from q[sub(c)] and q[sub(t)]
			4.9.6.2 Shear Wave Velocity from f[sub(s)]
			4.9.6.3 Shear Modulus from q[sub(c)] and q[sub(t)]
		4.9.7 Constrained Modulus
		4.9.8 Coefficient of Consolidation
		4.9.9 Hydraulic Conductivity
	4.10 Advantages and Limitations of CPT/CPTU
	4.11 CPT-SPT Correlations
	4.12 CPT/CPTU in Foundation Design
		4.12.1 Shallow Foundations
		4.12.2 Deep Foundations
	4.13 Summary of CPT/CPTU
	References
5 Field Vane Test (FVT)
	5.1 Introduction
	5.2 Mechanics
	5.3 Equipment
		5.3.1 Unprotected Vane Through Casing
		5.3.2 Protected Rods and Unprotected Vane
		5.3.3 Protected Rods and Protected Vane
		5.3.4 Unprotected Rods and Unprotected Vane with Slip Coupling
		5.3.5 Vanes
	5.4 Test Procedures
	5.5 Factors Affecting Test Results
		5.5.1 Installation Effects
			5.5.1.1 Disturbance
			5.5.1.2 Insertion Pore Water Pressures
		5.5.2 Delay (Consolidation) Time
		5.5.3 Rate of Shearing
		5.5.4 Progressive Failure
		5.5.5 Vane Size
		5.5.6 Vane Shape
	5.6 Interpretation of Undrained Strength from FVT
	5.7 Anisotropic Analysis
	5.8 Measuring Postpeak Strength
	5.9 Field Vane Correction Factors
	5.10 Interpretation of Stress History from FVT
	5.11 Summary of FVT
	References
6 Dilatometer Test (DMT)
	6.1 Introduction
	6.2 Mechanics
	6.3 Equipment
	6.4 Test Procedure
		6.4.1 Lift-off Pressure
		6.4.2 1 mm Expansion Pressure
		6.4.3 Recontact Pressure
	6.5 Data Reduction
		6.5.1 Lift-off and Penetration Pore Pressures
		6.5.2 1 mm Expansion Pressure
		6.5.3 Recontact Pressure
	6.6 Presentation of Test Results
	6.7 Interpretation of Test Results
		6.7.1 Evaluating Stratigraphy
		6.7.2 Interpretation of DMT Results in Fine-Grained Soils
			6.7.2.1 Undrained Shear Strength
			6.7.2.2 Stress History – OCR
			6.7.2.3 Preconsolidation Stress
			6.7.2.4 Lateral Stresses
			6.7.2.5 Constrained Modulus
			6.7.2.6 Elastic Modulus
			6.7.2.7 Small-Strain Shear Modulus
			6.7.2.8 Liquidity Index
			6.7.2.9 California Bearing Ratio
			6.7.2.10 Coefficient of Consolidation
		6.7.3 Interpretation of DMT Results in Coarse-Grained Soils
			6.7.3.1 Relative Density (D[sub(r)])
			6.7.3.2 State Parameter
			6.7.3.3 Drained Friction Angle
			6.7.3.4 In Situ Stresses
			6.7.3.5 Stress History
			6.7.3.6 Constrained Modulus
			6.7.3.7 Elastic Modulus
			6.7.3.8 Small-Strain Shear Modulus
			6.7.3.9 Coefficient of Subgrade Reaction
			6.7.3.10 Liquefaction Potential
	6.8 Seismic Dilatometer
	6.9 Design Applications
	6.10 Summary of DMT
	References
7 Pressuremeter Test (PMT)
	7.1 Introduction
	7.2 Mechanics of the Test
	7.3 Pressuremeter Equipment
		7.3.1 Prebored Pressuremeters
			7.3.1.1 Tri-Cell Probe
			7.3.1.2 Mono-Cell Probe
		7.3.2 Self-Boring Pressuremeters
		7.3.3 Full-Displacement (Cone) Pressuremeters
		7.3.4 Push-in Pressuremeter
	7.4 Creating a Borehole for the PMT
	7.5 Test Procedures
		7.5.1 Test Procedure A – Equal-Pressure Increment Method
		7.5.2 Test Procedure B – Equal-Volume Increment Method
		7.5.3 Continuous Loading Tests
		7.5.4 Holding Tests
	7.6 Data Reduction
		7.6.1 Corrected Pressure-Volume Curve
			7.6.1.1 Initial Pressure, P[sub(O)]
			7.6.1.2 Creep Pressure, P[sub(f)]
			7.6.1.3 Limit Pressure, P[sub(L)]
			7.6.1.4 Net Limit Pressure, P[sub(L)][sup(⁎)]
			7.6.1.5 Pressuremeter Modulus, E[sub(m)]
			7.6.1.6 Unload-Reload Modulus, E[sub(UR)]
		7.6.2 Creep Curve
		7.6.3 Relationships Between PMT Parameters
	7.7 Factors Affecting Test Results
		7.7.1 Method of Installation
		7.7.2 Calibration of Membrane
		7.7.3 Volume Losses
		7.7.4 Geometry of Cutter (SBPMT)
		7.7.5 Rate of Installation (SBPMT)
	7.8 Interpretation of Tests Results in Fine-Grained Soils
		7.8.1 In Situ Horizontal Stress
		7.8.2 Undrained Shear Strength
			7.8.2.1 Theoretical Evaluation
			7.8.2.2 Empirical Approach
		7.8.3 Preconsolidation Stress
		7.8.4 Small-Strain Shear Modulus
	7.9 Interpretation of Test Results in Coarse-Grained Soils
	7.10 Pressuremeter Testing in Rock
	7.11 Correlations with Other In Situ Tests
	7.12 Applications to Design
		7.12.1 Design of Shallow Foundations
			7.12.1.1 Bearing Capacity
			7.12.1.2 Settlement
		7.12.2 Deep Foundations
			7.12.2.1 Ultimate Axial Load of Deep Foundations
			7.12.2.2 Laterally Loaded Shafts and Piles
	7.13 Summary of PMT
	References
8 Borehole Shear Test (BST)
	8.1 Introduction
	8.2 Mechanics
	8.3 Equipment
		8.3.1 Shear Head
		8.3.2 Control Console
		8.3.3 Shear Force Reaction Base Plate
	8.4 Test Procedures
		8.4.1 Multistage Testing
		8.4.2 Single-Stage “Fresh” Testing
	8.5 Borehole Preparation
	8.6 Interpretation of Test Results
	8.7 Range of Soil Applicability
	8.8 Factors Affecting Test Results
	8.9 Interface Shear Tests
	8.10 Comparison with Laboratory Tests
	8.11 Equipment Modifications
	8.12 Applications of BST for Design
	8.13 Advantages and Limitations
		8.13.1 Advantages
		8.13.2 Limitations
	8.14 Summary of BST
	References
9 Plate Load Test (PLT) and Screw Plate Load Test (SPLT)
	9.1 Introduction
	9.2 Plate Load Test
		9.2.1 Equipment
		9.2.2 Test Procedures
			9.2.2.1 Tests on the Ground Surface
			9.2.2.2 Tests in an Excavation/Test Pit
			9.2.2.3 Tests in Lined Borings
			9.2.2.4 Horizontal Plate Load Tests
	9.3 Screw Plate Tests
		9.3.1 Equipment
		9.3.2 Test Procedures
	9.4 Presentation of Test Results
	9.5 Interpretation of Results
		9.5.1 Subgrade Reaction Modulus
		9.5.2 Elastic Modulus
			9.5.2.1 Plate Load Test
			9.5.2.2 Screw Plate Test
		9.5.3 Shear Modulus
		9.5.4 Undrained Shear Strength of Clays
		9.5.5 Coefficient of Consolidation
	9.6 Plate Load as a Prototype Footing
	9.7 Summary of PLT and SPLT
	References
10 Other In Situ Tests
	10.1 Introduction
	10.2 Large-Scale In-Place Shear Box Tests
		10.2.1 Background
		10.2.2 Test Equipment
		10.2.3 Test Procedures
		10.2.4 Results and Interpretation
	10.3 Hydraulic Fracture Tests (HFTs)
		10.3.1 Background
		10.3.2 Test Equipment
			10.3.2.1 Tests with Push-in Piezometer
			10.3.2.2 Tests in an Open Borehole
		10.3.3 Test Procedures
		10.3.4 Results and Interpretation
	10.4 Push-in Earth Pressure Cells
		10.4.1 Background
		10.4.2 Test Equipment
		10.4.3 Test Procedures
		10.4.4 Results and Interpretation
	References
Index




نظرات کاربران