دسترسی نامحدود
برای کاربرانی که ثبت نام کرده اند
برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید
در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید
برای کاربرانی که ثبت نام کرده اند
درصورت عدم همخوانی توضیحات با کتاب
از ساعت 7 صبح تا 10 شب
ویرایش: 2
نویسندگان: Forrest W. Breyfogle
سری:
ISBN (شابک) : 0471265721, 9780471265726
ناشر: John Wiley and Sons
سال نشر: 2003
تعداد صفحات: 1231
زبان: English
فرمت فایل : PDF (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود)
حجم فایل: 8 مگابایت
در صورت تبدیل فایل کتاب Implementing six sigma: smarter solutions using statistical methods به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.
توجه داشته باشید کتاب پیاده سازی شش سیگما: راه حل های هوشمندتر با استفاده از روش های آماری نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.
شامل پوشش جدید و گسترده ای از ساخت زیرساخت های شش سیگما و محک زدن است. طرح ها، چک لیست ها، معیارها و مشکلات را ارائه می دهد.
Includes new and expanded coverage of Six Sigma infrastructure building and benchmarking.Provides plans, checklists, metrics, and pitfalls.
IMPLEMENTING SIX SIGMA......Page 3
CONTENTS......Page 9
PREFACE......Page 33
PART I S(4)/IEE DEPLOYMENT AND DEFINE PHASE FROM DMAIC......Page 45
1 Six Sigma Overview and S(4)/IEE Implementaton......Page 47
1.1 Background of Six Sigma......Page 48
1.2 General Electric’s Experiences with Six Sigma......Page 50
1.3 Additional Experiences with Six Sigma......Page 51
1.4 What Is Six Sigma and S(4)/IEE?......Page 54
1.5 The Six Sigma Metric......Page 56
1.6 Traditional Approach to the Deployment of Statistical Methods......Page 59
1.7 Six Sigma Benchmarking Study......Page 60
1.8 S(4)/IEE Business Strategy Implementation......Page 61
1.9 Six Sigma as an S(4)/IEE Business Strategy......Page 63
1.10 Creating an S(4)/IEE Business Strategy with Roles and Responsibilities......Page 66
1.11 Integration of Six Sigma with Lean......Page 75
1.12 Day-to-Day Business Management Using S(4)/IEE......Page 76
1.13 S(4)/IEE Project Initiation and Execution Roadmap......Page 77
1.14 Project Benefit Analysis......Page 80
1.15 Examples in This Book That Describe the Benefits and Strategies of S(4)/IEE......Page 82
1.16 Effective Six Sigma Training and Implementation......Page 85
1.17 Computer Software......Page 87
1.18 Selling the Benefits of Six Sigma......Page 88
1.19 S(4)/IEE Difference......Page 89
1.20 S(4)/IEE Assessment......Page 92
1.21 Exercises......Page 95
2 Voice of the Customer and the S(4)/IEE Define Phase......Page 96
2.1 Voice of the Customer......Page 97
2.2 A Survey Methodology to Identify Customer Needs......Page 99
2.3 Goal Setting and Measurements......Page 101
2.4 Scorecard......Page 103
2.5 Problem Solving and Decision Making......Page 104
2.7 S(4)/IEE DMAIC Define Phase Execution......Page 105
2.8 S(4)/IEE Assessment......Page 107
2.9 Exercises......Page 108
PART II S(4)/IEE MEASURE PHASE FROM DMAIC......Page 109
3.1 Voice of the Customer......Page 115
3.2 Variability and Process Improvements......Page 116
3.3 Common Causes versus Special Causes and Chronic versus Sporadic Problems......Page 118
3.4 Example 3.1: Reacting to Data......Page 119
3.5 Sampling......Page 123
3.6 Simple Graphic Presentations......Page 124
3.8 Sample Statistics (Mean, Range, Standard Deviation, and Median)......Page 125
3.9 Attribute versus Continuous Data Response......Page 129
3.10 Visual Inspections......Page 130
3.11 Hypothesis Testing and the Interpretation of Analysis of Variance Computer Outputs......Page 131
3.12 Experimentation Traps......Page 133
3.13 Example 3.3: Experimentation Trap—Measurement Error and Other Sources of Variability......Page 134
3.14 Example 3.4: Experimentation Trap—Lack of Randomization......Page 136
3.15 Example 3.5: Experimentation Trap—Confused Effects......Page 137
3.16 Example 3.6: Experimentation Trap—Independently Designing and Conducting an Experiment......Page 138
3.18 DMAIC Measure Phase......Page 140
3.19 S(4)/IEE Assessment......Page 141
3.20 Exercises......Page 143
4 Process Flowcharting/Process Mapping......Page 146
4.2 Description......Page 147
4.3 Defining a Process and Determining Key Process Input/Output Variables......Page 148
4.4 Example 4.1: Defining a Development Process......Page 149
4.6 S(4)/IEE Assessment......Page 151
4.7 Exercises......Page 153
5 Basic Tools......Page 155
5.1 Descriptive Statistics......Page 156
5.2 Run Chart (Time Series Plot)......Page 157
5.3 Control Chart......Page 158
5.5 Check Sheets......Page 159
5.6 Pareto Chart......Page 160
5.8 Brainstorming......Page 161
5.10 Force-Field Analysis......Page 163
5.11 Cause-and-Effect Diagram......Page 164
5.12 Affinity Diagram......Page 166
5.13 Interrelationship Digraph (ID)......Page 167
5.14 Tree Diagram......Page 168
5.16 Matrix Diagram and Prioritization Matrices......Page 169
5.17 Process Decision Program Chart (PDPC)......Page 171
5.18 Activity Network Diagram or Arrow Diagram......Page 173
5.20 Example 5.1: Improving a Process That Has Defects......Page 174
5.21 Example 5.2: Reducing the Total Cycle Time of a Process......Page 177
5.22 Example 5.3: Improving a Service Process......Page 181
5.23 Exercises......Page 183
6.1 Description......Page 185
6.2 Multiple Events......Page 186
6.3 Multiple-Event Relationships......Page 187
6.4 Bayes’ Theorem......Page 188
6.5 S(4)/IEE Assessment......Page 189
6.6 Exercises......Page 190
7.1 An Overview of the Application of Distributions......Page 192
7.2 Normal Distribution......Page 194
7.3 Example 7.1: Normal Distribution......Page 196
7.4 Binomial Distribution......Page 197
7.5 Example 7.2: Binomial Distribution—Number of Combinations and Rolls of Die......Page 199
7.6 Example 7.3: Binomial—Probability of Failure......Page 200
7.8 Poisson Distribution......Page 201
7.10 Exponential Distribution......Page 203
7.11 Example 7.5: Exponential Distribution......Page 204
7.12 Weibull Distribution......Page 205
7.15 Tabulated Probability Distribution: Chi-Square Distribution......Page 207
7.16 Tabulated Probability Distribution: t Distribution......Page 209
7.18 Hazard Rate......Page 210
7.20 Homogeneous Poisson Process (HPP)......Page 212
7.21 Applications for Various Types of Distributions and Processes......Page 213
7.23 Exercises......Page 215
8.1 S(4)/IEE Application Examples: Probability Plotting......Page 219
8.3 Probability Plotting......Page 220
8.4 Example 8.1: PDF, CDF, and Then a Probability Plot......Page 221
8.5 Probability Plot Positions and Interpretation of Plots......Page 224
8.6 Hazard Plots......Page 225
8.7 Example 8.2: Hazard Plotting......Page 226
8.8 Summarizing the Creation of Probability and Hazard Plots......Page 227
8.10 S(4)/IEE Assessment......Page 229
8.11 Exercises......Page 230
9.1 Converting Defect Rates (DPMO or PPM) to Sigma Quality Level Units......Page 232
9.2 Six Sigma Relationships......Page 233
9.3 Process Cycle Time......Page 234
9.5 Example 9.1: Yield......Page 235
9.8 Defects per Million Opportunities (DPMO)......Page 236
9.9 Example 9.3: Defects per Million Opportunities (DPMO)......Page 237
9.10 Rolled Throughput Yield......Page 238
9.11 Example 9.4: Rolled Throughput Yield......Page 239
9.14 Example 9.6: Yield Calculation......Page 240
9.15 Example 9.7: Normal Transformation (Z Value)......Page 241
9.16 Normalized Yield and Z Value for Benchmarking......Page 242
9.19 S(4)/IEE Assessment......Page 243
9.20 Exercises......Page 244
10 Basic Control Charts......Page 248
10.1 S(4)/IEE Application Examples: Control Charts......Page 249
10.2 Satellite-Level View of the Organization......Page 250
10.3 A 30,000-Foot-Level View of Operational and Project Metrics......Page 251
10.4 AQL (Acceptable Quality Level) Sampling Can Be Deceptive......Page 254
10.6 Monitoring Processes......Page 257
10.7 Rational Sampling and Rational Subgrouping......Page 261
10.8 Statistical Process Control Charts......Page 263
10.9 Interpretation of Control Chart Patterns......Page 264
10.10 x and R and x and s Charts: Mean and Variability Measurements......Page 266
10.11 Example 10.2: x and R Chart......Page 267
10.12 XmR Charts: Individual Measurements......Page 270
10.13 Example 10.3: XmR Charts......Page 271
10.14 x and r versus XmR Charts......Page 273
10.15 Attribute Control Charts......Page 274
10.16 p Chart: Fraction Nonconforming Measurements......Page 275
10.17 Example 10.4: p Chart......Page 276
10.19 c Chart: Number of Nonconformities......Page 279
10.21 Median Charts......Page 280
10.22 Example 10.5: Alternatives to p-Chart, np-Chart, c-Chart, and u-Chart Analyses......Page 281
10.23 Charts for Rare Events......Page 283
10.24 Example 10.6: Charts for Rare Events......Page 284
10.25 Discussion of Process Control Charting at the Satellite Level and 30,000-Foot Level......Page 286
10.27 XmR Chart of Subgroup Means and Standard Deviation: An Alternative to Traditional x and R Charting......Page 289
10.28 Notes on the Shewhart Control Chart......Page 291
10.29 S(4)/IEE Assessment......Page 292
10.30 Exercises......Page 294
11 Process Capability and Process Performance Metrics......Page 298
11.1 S(4)/IEE Application Examples: Process Capability/Performance Metrics......Page 299
11.2 Definitions......Page 301
11.3 Misunderstandings......Page 302
11.4 Confusion: Short-Term versus Long-Term Variability......Page 303
11.5 Calculating Standard Deviation......Page 304
11.6 Process Capability Indices: C(p) and C(pk)......Page 309
11.7 Process Capability/Performance Indices: P(p) and P(pk)......Page 311
11.8 Process Capability and the Z Distribution......Page 312
11.10 C(pm) Index......Page 313
11.11 Example 11.1: Process Capability/Performance Indices......Page 314
11.12 Example 11.2: Process Capability/Performance Indices Study......Page 319
11.13 Example 11.3: Process Capability/Performance Index Needs......Page 323
11.15 Example 11.4: Confidence Interval for Process Capability......Page 326
11.16 Process Capability/Performance for Attribute Data......Page 327
11.17 Describing a Predictable Process Output When No Specification Exists......Page 328
11.18 Example 11.5: Describing a Predictable Process Output When No Specification Exists......Page 329
11.20 Process Capability/Performance Metric for Nonnormal Distribution......Page 334
11.21 Example 11.6: Process Capability/Performance Metric for Nonnormal Distributions: Box-Cox Transformation......Page 336
11.23 The S(4)/IEE Difference......Page 341
11.24 S(4)/IEE Assessment......Page 343
11.25 Exercises......Page 344
12 Measurement Systems Analysis......Page 350
12.2 Variability Sources in a 30,000-Foot-Level Metric......Page 352
12.3 S(4)/IEE Application Examples: MSA......Page 353
12.4 Terminology......Page 354
12.5 Gage R&R Considerations......Page 356
12.6 Gage R&R Relationships......Page 358
12.7 Additional Ways to Express Gage R&R Relationships......Page 360
12.8 Preparation for a Measurement System Study......Page 361
12.9 Example 12.1: Gage R&R......Page 362
12.10 Linearity......Page 366
12.12 Attribute Gage Study......Page 367
12.13 Example 12.3: Attribute Gage Study......Page 368
12.14 Gage Study of Destructive Testing......Page 370
12.15 Example 12.4: Gage Study of Destructive Testing......Page 371
12.16 A 5-Step Measurement Improvement Process......Page 374
12.17 Example 12.5: A 5-Step Measurement Improvement Process......Page 379
12.19 Exercises......Page 385
13 Cause-and-Effect Matrix and Quality Function Deployment......Page 391
13.1 S(4)/IEE Application Examples: Cause-and-Effect Matrix......Page 392
13.2 Quality Function Deployment (QFD)......Page 393
13.3 Example 13.1: Creating a QFD Chart......Page 398
13.4 Cause-and-Effect Matrix......Page 400
13.5 Data Relationship Matrix......Page 402
13.7 Exercises......Page 403
14 FMEA......Page 404
14.1 S(4)/IEE Application Examples: FMEA......Page 405
14.2 Implementation......Page 406
14.3 Development of a Design FMEA......Page 407
14.4 Design FMEA Tabular Entries......Page 410
14.5 Development of a Process FMEA......Page 413
14.6 Process FMEA Tabular Entries......Page 415
14.7 Exercises......Page 425
PART III S(4)/IEE ANALYZE PHASE FROM DMAIC (OR PASSIVE ANALYSIS PHASE)......Page 427
15 Visualization of Data......Page 429
15.2 Multi-vari Charts......Page 430
15.3 Example 15.1: Multi-vari Chart of Injection-Molding Data......Page 431
15.4 Box Plot......Page 433
15.5 Example 15.2: Plots of Injection-Molding Data......Page 434
15.6 S(4)/IEE Assessment......Page 435
15.7 Exercises......Page 436
16 Confidence Intervals and Hypothesis Tests......Page 443
16.2 Central Limit Theorem......Page 444
16.3 Hypothesis Testing......Page 445
16.4 Example 16.1: Hypothesis Testing......Page 448
16.6 Exercises......Page 449
17.1 Summarizing Sampled Data......Page 451
17.3 Example 17.1: Sample Size Determination for a Mean Criterion Test......Page 452
17.4 Confidence Intervals on the Mean and Hypothesis Test Criteria Alternatives......Page 453
17.5 Example 17.2: Confidence Intervals on the Mean......Page 455
17.8 Example 17.4: Standard Deviation Confidence Statement......Page 457
17.9 Percentage of the Population Assessments......Page 458
17.10 Example 17.5: Percentage of the Population Statements......Page 459
17.11 Statistical Tolerancing......Page 461
17.12 Example 17.6: Combining Analytical Data with Statistical Tolerancing......Page 462
17.14 Example 17.7: Nonparametric Runs Test for Randomization......Page 464
17.16 Exercises......Page 465
18 Inferences: Attribute (Pass/Fail) Response......Page 470
18.2 Sample Size: Hypothesis Test of an Attribute Criterion......Page 471
18.4 Confidence Intervals for Attribute Evaluations and Alternative Sample Size Considerations......Page 472
18.6 Example 18.2: Reduced Sample Size Testing—Attribute Response Situations......Page 474
18.8 S(4)/IEE Assessment......Page 476
18.9 Exercises......Page 477
19.1 S(4)/IEE Application Examples: Comparison Tests......Page 480
19.3 Sample Size: Comparing Means......Page 481
19.4 Comparing Two Means......Page 482
19.5 Example 19.1: Comparing the Means of Two Samples......Page 483
19.6 Comparing Variances of Two Samples......Page 484
19.7 Example 19.2: Comparing the Variance of Two Samples......Page 485
19.9 Example 19.3: Comparing Responses Using a Probability Plot......Page 486
19.11 Example 19.4: Paired Comparison Testing......Page 487
19.13 Example 19.5: Comparing Means to Determine If Process Improved......Page 489
19.14 S(4)/IEE Assessment......Page 494
19.15 Exercises......Page 495
20.1 S(4)/IEE Application Examples: Attribute Comparison Tests......Page 499
20.4 Comparing Proportions......Page 500
20.5 Example 20.1: Comparing Proportions......Page 501
20.6 Comparing Nonconformance Proportions and Count Frequencies......Page 502
20.7 Example 20.2: Comparing Nonconformance Proportions......Page 503
20.8 Example 20.3: Comparing Counts......Page 504
20.9 Example 20.4: Difference in Two Proportions......Page 505
20.11 Exercises......Page 506
21.1 Description......Page 509
21.2 Example 21.1: Bootstrapping to Determine Confidence Interval for Mean, Standard Deviation, P(p) and P(pk)......Page 510
21.4 Bootstrapping Applications......Page 515
21.5 Exercises......Page 516
22.1 S(4)/IEE Application Examples: Variance Components......Page 518
22.2 Description......Page 519
22.3 Example 22.1: Variance Components of Pigment Paste......Page 520
22.4 Example 22.2: Variance Components of a Manufactured Door Including Measurement System Components......Page 522
22.5 Example 22.3: Determining Process Capability/Performance Using Variance Components......Page 523
22.6 Example 22.4: Variance Components Analysis of Injection-Molding Data......Page 524
22.7 S(4)/IEE Assessment......Page 525
22.8 Exercises......Page 526
23 Correlation and Simple Linear Regression......Page 528
23.3 Correlation......Page 529
23.5 Simple Linear Regression......Page 531
23.7 Analysis of Residuals: Normality Assessment......Page 536
23.10 Example 23.2: Simple Linear Regression......Page 537
23.12 Exercises......Page 540
24 Single-Factor (One-Way) Analysis of Variance (ANOVA) and Analysis of Means (ANOM)......Page 544
24.2 Application Steps......Page 545
24.3 Single-Factor Analysis of Variance Hypothesis Test......Page 546
24.4 Single-Factor Analysis of Variance Table Calculations......Page 547
24.5 Estimation of Model Parameters......Page 548
24.7 Model Adequacy......Page 549
24.8 Analysis of Residuals: Fitted Value Plots and Data Transformations......Page 550
24.10 Example 24.1: Single-Factor Analysis of Variance......Page 551
24.11 Analysis of Means......Page 555
24.12 Example 24.2: Analysis of Means......Page 556
24.13 Example 24.3: Analysis of Means of Injection-Molding Data......Page 557
24.14 Six Sigma Considerations......Page 558
24.15 Example 24.4: Determining Process Capability Using One-Factor Analysis of Variance......Page 560
24.17 Example 24.5: Nonparametric Kruskal–Wallis Test......Page 562
24.18 Nonparametric Estimate: Mood’s Median Test......Page 563
24.20 Other Considerations......Page 564
24.22 Exercises......Page 565
25.1 Two-Factor Factorial Design......Page 568
25.2 Example 25.1: Two-Factor Factorial Design......Page 570
25.3 Nonparametric Estimate: Friedman Test......Page 574
25.5 S(4)/IEE Assessment......Page 575
25.6 Exercises......Page 576
26.1 S(4)/IEE Application Examples: Multiple Regression......Page 577
26.3 Example 26.1: Multiple Regression......Page 578
26.4 Other Considerations......Page 580
26.5 Example 26.2: Multiple Regression Best Subset Analysis......Page 581
26.7 Example 26.3: Indicator Variables......Page 583
26.8 Example 26.4: Indicator Variables with Covariate......Page 585
26.9 Binary Logistic Regression......Page 586
26.10 Example 26.5: Binary Logistic Regression......Page 587
26.11 Exercises......Page 588
PART IV S(4)/IEE IMPROVE PHASE FROM DMAIC (OR PROACTIVE TESTING PHASE)......Page 591
27 Benefiting from Design of Experiments (DOE)......Page 593
27.1 Terminology and Benefits......Page 594
27.2 Example 27.1: Traditional Experimentation......Page 595
27.3 The Need for DOE......Page 596
27.4 Common Excuses for Not Using DOE......Page 597
27.5 Exercises......Page 598
28.1 S(4)/IEE Application Examples: DOE......Page 599
28.2 Conceptual Explanation: Two-Level Full Factorial Experiments and Two-Factor Interactions......Page 601
28.3 Conceptual Explanation: Saturated Two-Level DOE......Page 603
28.4 Example 28.1: Applying DOE Techniques to a Nonmanufacturing Process......Page 605
28.5 Exercises......Page 614
29.1 Initial Thoughts When Setting Up a DOE......Page 615
29.2 Experiment Design Considerations......Page 616
29.3 Sample Size Considerations for a Continuous Response Output DOE......Page 618
29.4 Experiment Design Considerations: Choosing Factors and Levels......Page 619
29.5 Experiment Design Considerations: Factor Statistical Significance......Page 621
29.7 Blocking and Randomization......Page 622
29.8 Curvature Check......Page 623
29.10 Exercises......Page 624
30.1 Two-Level DOE Design Alternatives......Page 626
30.3 Determining Statistically Significant Effects and Probability Plotting Procedure......Page 628
30.4 Modeling Equation Format for a Two-Level DOE......Page 629
30.5 Example 30.1: A Resolution V DOE......Page 630
30.6 DOE Alternatives......Page 643
30.7 Example 30.2: A DOE Development Test......Page 647
30.8 S(4)/IEE Assessment......Page 651
30.9 Exercises......Page 653
31.1 Latin Square Designs and Youden Square Designs......Page 657
31.2 Evolutionary Operation (EVOP)......Page 658
31.4 Fold-Over Designs......Page 659
31.7 Factorial Designs That Have More Than Two Levels......Page 661
31.8 Example 31.2: Creating a Two-Level DOE Strategy from a Many-Level Full Factorial Initial Proposal......Page 662
31.9 Example 31.3: Resolution III DOE with Interaction Consideration......Page 663
31.10 Example 31.4: Analysis of a Resolution III Experiment with Two-Factor Interaction Assessment......Page 664
31.12 Example 31.6: A System DOE Stress to Fail Test......Page 666
31.13 S(4)/IEE Assessment......Page 671
31.14 Exercises......Page 673
32 Robust DOE......Page 674
32.2 Test Strategies......Page 675
32.3 Loss Function......Page 676
32.4 Example 32.1: Loss Function......Page 678
32.5 Robust DOE Strategy......Page 679
32.6 Analyzing 2(k) Residuals for Sources of Variability Reduction......Page 680
32.7 Example 32.2: Analyzing 2(k) Residuals for Sources of Variability Reduction......Page 681
32.9 Exercises......Page 684
33.1 Modeling Equations......Page 687
33.2 Central Composite Design......Page 689
33.3 Example 33.1: Response Surface Design......Page 691
33.4 Box-Behnken Designs......Page 693
33.5 Mixture Designs......Page 694
33.6 Simplex Lattice Designs for Exploring the Whole Simplex Region......Page 696
33.7 Example 33.2: Simplex-Lattice Designed Mixture Experiment......Page 698
33.8 Mixture Designs with Process Variables......Page 700
33.9 Example 33.3: Mixture Experiment with Process Variables......Page 702
33.12 Computer-Generated Mixture Designs/Analyses......Page 705
33.14 Additional Response Surface Design Considerations......Page 707
33.15 S(4)/IEE Assessment......Page 709
33.16 Exercises......Page 710
PART V S(4)/IEE CONTROL PHASE FROM DMAIC AND APPLICATION EXAMPLES......Page 711
34 Short-Run and Target Control Charts......Page 713
34.1 S(4)/IEE Application Examples: Target Control Charts......Page 714
34.3 Example 34.1: Target Chart......Page 715
34.4 Z Chart (Standardized Variables Control Chart)......Page 717
34.5 Example 34.2: ZmR Chart......Page 718
34.6 Exercises......Page 719
35.1 S(4)/IEE Application Examples: Three-Way Control Chart......Page 721
35.3 Example 35.1: Three-Way Control Chart......Page 722
35.4 CUSUM Chart (Cumulative Sum Chart)......Page 724
35.5 Example 35.2: CUSUM Chart......Page 727
35.6 Example 35.3: CUSUM Chart of Bearing Diameter......Page 729
35.8 Example 35.4: Zone Chart......Page 730
35.10 Exercises......Page 731
36.1 S(4)/IEE Application Examples: EWMA and EPC......Page 734
36.2 Description......Page 735
36.3 Example 36.1: EWMA with Engineering Process Control......Page 736
36.4 Exercises......Page 745
37.1 S(4)/IEE Application Examples: Pre-control Charts......Page 747
37.3 Pre-control Setup (Qualification Procedure)......Page 748
37.6 Modified Pre-control......Page 749
37.9 Exercises......Page 750
38 Control Plan, Poka-yoke, Realistic Tolerancing, and Project Completion......Page 752
38.1 Control Plan: Overview......Page 753
38.2 Control Plan: Entries......Page 754
38.4 Realistic Tolerances......Page 760
38.5 Project Completion......Page 761
38.7 Exercises......Page 762
39.1 Product Life Cycle......Page 763
39.3 Repairable versus Nonrepairable Testing......Page 765
39.4 Nonrepairable Device Testing......Page 766
39.5 Repairable System Testing......Page 767
39.6 Accelerated Testing: Discussion......Page 768
39.7 High-Temperature Acceleration......Page 769
39.9 Eyring Model......Page 771
39.10 Thermal Cycling: Coffin–Manson Relationship......Page 772
39.11 Model Selection: Accelerated Testing......Page 773
39.12 S(4)/IEE Assessment......Page 774
39.13 Exercises......Page 776
40.1 Considerations When Designing a Test of a Repairable System Failure Criterion......Page 777
40.2 Sequential Testing: Poisson Distribution......Page 779
40.3 Example 40.1: Sequential Reliability Test......Page 781
40.4 Total Test Time: Hypothesis Test of a Failure Rate Criterion......Page 782
40.5 Confidence Interval for Failure Rate Evaluations......Page 783
40.6 Example 40.2: Time-Terminated Reliability Testing Confidence Statement......Page 784
40.8 Example 40.3: Reduced Sample Size Testing—Poisson Distribution......Page 785
40.9 Reliability Test Design with Test Performance Considerations......Page 786
40.10 Example 40.4: Time-Terminated Reliability Test Design—with Test Performance Considerations......Page 787
40.11 Posttest Assessments......Page 789
40.12 Example 40.5: Postreliability Test Confidence Statements......Page 790
40.13 Repairable Systems with Changing Failure Rate......Page 791
40.14 Example 40.6: Repairable Systems with Changing Failure Rate......Page 792
40.15 Example 40.7: An Ongoing Reliability Test (ORT) Plan......Page 796
40.16 S(4)/IEE Assessment......Page 797
40.17 Exercises......Page 798
41.1 Reliability Test Considerations for a Nonrepairable Device......Page 800
41.2 Weibull Probability Plotting and Hazard Plotting......Page 801
41.3 Example 41.1: Weibull Probability Plot for Failure Data......Page 802
41.4 Example 41.2: Weibull Hazard Plot with Censored Data......Page 803
41.5 Nonlinear Data Plots......Page 805
41.6 Reduced Sample Size Testing: Weibull Distribution......Page 808
41.7 Example 41.3: A Zero Failure Weibull Test Strategy......Page 809
41.9 Example 41.4: Lognormal Probability Plot Analysis......Page 810
41.10 S(4)/IEE Assessment......Page 812
41.11 Exercises......Page 813
42.1 The Concept of Pass/Fail Functional Testing......Page 815
42.2 Example 42.1: Automotive Test—Pass/Fail Functional Testing Considerations......Page 816
42.3 A Test Approach for Pass/Fail Functional Testing......Page 817
42.4 Example 42.2: A Pass/Fail System Functional Test......Page 819
42.5 Example 42.3: A Pass/Fail Hardware/Software System Functional Test......Page 821
42.7 Factor Levels Greater Than 2......Page 822
42.8 Example 42.4: A Software Interface Pass/Fail Functional Test......Page 823
42.10 Example 42.5: A Search Pattern Strategy to Determine the Source of Failure......Page 825
42.11 Additional Applications......Page 829
42.12 A Process for Using DOEs with Product Development......Page 830
42.13 Example 42.6: Managing Product Development Using DOEs......Page 831
42.15 Exercises......Page 834
43.1 Example 43.1: Improving Product Development......Page 836
43.2 Example 43.2: A QFD Evaluation with DOE......Page 838
43.3 Example 43.3: A Reliability and Functional Test of an Assembly......Page 844
43.4 Example 43.4: A Development Strategy for a Chemical Product......Page 853
43.5 Example 43.5: Tracking Ongoing Product Compliance from a Process Point of View......Page 855
43.6 Example 43.6: Tracking and Improving Times for Change Orders......Page 857
43.7 Example 43.7: Improving the Effectiveness of Employee Opinion Surveys......Page 859
43.8 Example 43.8: Tracking and Reducing the Time of Customer Payment......Page 860
43.9 Example 43.9: Automobile Test—Answering the Right Question......Page 861
43.10 Example 43.10: Process Improvement and Exposing the Hidden Factory......Page 867
43.11 Example 43.11: Applying DOE to Increase Website Traffic—A Transactional Application......Page 870
43.12 Example 43.12: AQL Deception and Alternative......Page 873
43.13 Example 43.13: S(4)/IEE Project: Reduction of Incoming Wait Time in a Call Center......Page 874
43.14 Example 43.14: S(4)/IEE Project: Reduction of Response Time to Calls in a Call Center......Page 881
43.15 Example 43.15: S(4)/IEE Project: Reducing the Number of Problem Reports in a Call Center......Page 886
43.16 Example 43.16: S(4)/IEE Project: AQL Test Assessment......Page 891
43.17 Example 43.17: S(4)/IEE Project: Qualification of Capital Equipment......Page 892
43.18 Example 43.18: S(4)/IEE Project: Qualification of Supplier’s Production Process and Ongoing Certification......Page 895
43.19 Exercises......Page 896
PART VI S(4)/IEE LEAN AND THEORY OF CONSTRAINTS......Page 899
44 Lean and Its Integration with S(4)/IEE......Page 901
44.2 Principles of Lean......Page 902
44.3 Kaizen......Page 904
44.4 S(4)/IEE Lean Implementation Steps......Page 905
44.5 Time-Value Diagram......Page 906
44.6 Example 44.1: Development of a Bowling Ball......Page 908
44.7 Example 44.2: Sales Quoting Process......Page 911
44.8 5S Method......Page 916
44.10 Total Productive Maintenance (TPM)......Page 917
44.12 Kanban......Page 920
44.13 Value Stream Mapping......Page 921
44.14 Exercises......Page 929
45 Integration of Theory of Constraints (TOC) in S(4)/IEE......Page 930
45.2 Measures of TOC......Page 931
45.3 Five Focusing Steps of TOC......Page 932
45.4 S(4)/IEE TOC Application and the Development of Strategic Plans......Page 933
45.5 TOC Questions......Page 934
45.6 Exercises......Page 935
PART VII DFSS AND 21-STEP INTEGRATION OF THE TOOLS......Page 937
46 Manufacturing Applications and a 21-Step Integration of the Tools......Page 939
46.1 A 21-Step Integration of the Tools: Manufacturing Processes......Page 940
47 Service/Transactional Applications and a 21-Step Integration of the Tools......Page 945
47.1 Measuring and Improving Service/Transactional Processes......Page 946
47.2 21-Step Integration of the Tools: Service/Transactional Processes......Page 947
48 DFSS Overview and Tools......Page 952
48.2 Using Previously Described Methodologies within DFSS......Page 953
48.3 Design for X (DFX)......Page 954
48.4 Axiomatic Design......Page 955
48.5 TRIZ......Page 956
48.6 Exercise......Page 958
49 Product DFSS......Page 959
49.1 Measuring and Improving Development Processes......Page 960
49.2 A 21-Step Integration of the Tools: Product DFSS......Page 962
49.3 Example 49.1: Notebook Computer Development......Page 967
49.4 Product DFSS Examples......Page 968
50 Process DFSS......Page 970
50.1 A 21-Step Integration of the Tools: Process DFSS......Page 971
PART VIII MANAGEMENT OF INFRASTRUCTURE AND TEAM EXECUTION......Page 977
51 Change Management......Page 979
51.1 Seeking Pleasure and Fear of Pain......Page 980
51.2 Cavespeak......Page 982
51.3 The Eight Stages of Change and S(4)/IEE......Page 983
51.4 Managing Change and Transition......Page 987
51.5 How Does an Organization Learn?......Page 988
52.1 Project Management: Planning......Page 990
52.2 Project Management: Measures......Page 992
52.3 Example 52.1: CPM/PERT......Page 995
52.4 Financial Analysis......Page 997
52.6 Exercises......Page 999
53.1 Orming Model......Page 1001
53.2 Interaction Styles......Page 1002
53.3 Making a Successful Team......Page 1003
53.5 Reacting to Common Team Problems......Page 1007
53.6 Exercise......Page 1010
54 Creativity......Page 1011
54.2 Creative Problem Solving......Page 1012
54.3 Inventive Thinking as a Process......Page 1013
54.4 Exercise......Page 1014
55.1 Quality Philosophies and Approaches......Page 1015
55.2 Deming’s 7 Deadly Diseases and 14 Points for Management......Page 1017
55.3 Organization Management and Quality Leadership......Page 1022
55.4 Quality Management and Planning......Page 1025
55.5 ISO 9000:2000......Page 1026
55.6 Malcolm Baldrige Assessment......Page 1028
55.7 Shingo Prize......Page 1029
55.8 GE Work-Out......Page 1030
55.10 Exercises......Page 1031
A.2 Six Sigma Benchmarking Study: Best Practices and Lessons Learned......Page 1033
A.3 Choosing a Six Sigma Provider......Page 1046
A.4 Agenda for Management and Employee S(4)/IEE Training......Page 1049
A.5 8D (8 Disciplines)......Page 1050
A.6 ASQ Black Belt Certification Test......Page 1055
B.1 Normal Distribution......Page 1058
B.3 Hypergeometric Distribution......Page 1059
B.5 Exponential Distribution......Page 1060
B.6 Weibull Distributions......Page 1061
C.1 Creating Histograms Manually......Page 1063
C.2 Example C.1: Histogram Plot......Page 1064
C.3 Theoretical Concept of Probability Plotting......Page 1065
C.4 Plotting Positions......Page 1066
C.5 Manual Estimation of a Best-Fit Probability Plot Line......Page 1067
C.7 Mathematically Determining the c(4) Constant......Page 1070
D.1 DOE: Sample Size for Mean Factor Effects......Page 1072
D.3 DOE: Derivation of Equation to Determine Contrast Column Sum of Squares......Page 1074
D.4 DOE: A Significance Test Procedure for Two-Level Experiments......Page 1076
D.5 DOE: Application Example......Page 1077
D.6 Illustration That a Standard Order DOE Design from Statistical Software Is Equivalent to a Table M Design......Page 1083
Appendix E: Reference Tables......Page 1084
List of Symbols......Page 1136
Glossary......Page 1142
References......Page 1169
Index......Page 1183