دسترسی نامحدود
برای کاربرانی که ثبت نام کرده اند
برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید
در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید
برای کاربرانی که ثبت نام کرده اند
درصورت عدم همخوانی توضیحات با کتاب
از ساعت 7 صبح تا 10 شب
ویرایش:
نویسندگان: Saura C. Sahu
سری:
ISBN (شابک) : 1119896223, 9781119896227
ناشر: Wiley
سال نشر: 2023
تعداد صفحات: 448
[450]
زبان: English
فرمت فایل : PDF (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود)
حجم فایل: 8 Mb
در صورت تبدیل فایل کتاب Impact of Engineered Nanomaterials in Genomics and Epigenomics به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.
توجه داشته باشید کتاب تاثیر نانومواد مهندسی شده در ژنومیک و اپی ژنومیک نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.
Impact of Engineered Nanomaterials in Genomics and Epigenomics Contents List of Contributors Preface Acknowledgments 1 Impact of Engineered Nanomaterials in Genomics and Epigenomics Nanotechnology: A Technological Advancement of the Twenty-First Century Genomics and Epigenomics Beneficial Impacts of Engineered Nanomaterials on Human Life Potential Adverse Health Effects of Engineered Nanomaterials Conclusions References 2 Molecular Impacts of Advanced Nanomaterials at Genomic and Epigenomic Levels Introduction Classification of NMs Absorption and Distribution of NMs Inhalation Exposure Oral Exposure Dermal Exposure Circulatory Distribution Accumulation of NMs in Organs Major Adverse Effects of NMs Known Cellular and Nuclear Uptake Mechanisms for Nanoparticles Epigenetic Mechanisms and the Effect of NMs DNA Methylation Histone Modification Noncoding RNAs Genetic and Genomic Effects of NMs Genetic Damage (Genotoxicity) Genomic Changes on the Messenger RNA Level Conclusion References 3 Endocrine Disruptors: Genetic, Epigenetic, and Related Pathways Introduction Toxic Effects of EDCs on Wildlife and Humans EDCs Effects on Wildlife Effects During Development Delayed Effects Transgenerational Effects Identification of EDC: Methods Genetic Pathways Nuclear Receptor-Mediated Assays Phosphorylation-Mediated Signaling Pathways of Nuclear Receptors and Other Transcription Factors: Link to EDC ER-Signaling Pathways Xenoandrogens and Metabolic Syndrome AR Signaling Pathways Mechanism of ED Epigenetic Mechanism Methylation and Gene Regulation Role of Noncoding RNAs Transgenerational Inheritance of Epigenetics Induced by EDCs Anti-Thyroids Organotin Genomic Signaling and Effects Epigenetic Effects of Organotin TCDD and Related Compounds TCDD and Genetic Response TCDD-Mediated Epigenetic Response Conclusions References 4 Nanoplastics in Agroecosystem and Phytotoxicity: An Evaluation of Cytogenotoxicity and Epigenetic Regulation Introduction Fate and Behavior of NPs in Agroecosystem and Soil Environment Uptake and Accumulation of NPs in Plants NPs and Phytotoxicity Morphological and Physiological Responses Biochemical and Metabolic Responses Can NPs Cause Cytogenotoxicity and Dysregulate Epigenetic Markers in Plants? NPs Cause Cytogenotoxicity NPs and Epigenetic Regulation Conclusion and Perspectives References 5 Metal Oxide Nanoparticles and Graphene-Based Nanomaterials: Genotoxic, Oxidative, and Epigenetic Effects Introduction Physicochemical Properties of NMs and Toxicity Mechanism of NM Genotoxicity Epigenetic Effects of Nanomaterials Studies on Genotoxic and Oxidative Effects of Metal Oxides and Graphene-Based Nanomaterials Titanium Dioxide NPs Zinc Oxide NPs Silver and Silver Oxide NPs Copper and Copper Oxide NPs Cobalt Oxide Nanoparticles Silicon Dioxide NPs Graphene-Based NMs Studies on Epigenetic Effects of Metal Oxides and Graphene-Based Nanomaterials Metal Oxide Nanomaterials Graphene-Based Nanomaterials Studies on Workers – Genotoxic and Oxidative Effects of Occupational Exposure to Metal Oxides Nanoparticles, SiO2 NPs, and Graphene-Based Nanomaterials Conclusions References 6 Epigenotoxicity of Titanium Dioxide Nanoparticles Introduction Cellular Uptake and Biodistribution DNA Methylation and TiO2 Nanoparticles Histone Modifications and TiO2 Nanoparticles MicroRNAs and TiO2 Nanoparticles Risk Assessment Conclusion Disclaimer References 7 Toxicogenomics of Multi-Walled Carbon Nanotubes Introduction MWCNTs Lung Injury Inflammation Oxidative Stress Fibrosis Mesothelioma Lung Cancer Genotoxicity Toxicogenomics of ENMs Transcriptomics – Technical Aspects Toxicogenomics of MWCNTs – Animal Studies Toxicogenomics of MWCNT – Human Studies Disclaimer References 8 Nano-Engineering in Traumatic Brain Injury Introduction Nanoparticles in the Treatment of TBI Synthesis of Nanoparticles Mechanisms of Action of Nanoparticles in TBI Materials Used for the Synthesis of NPs in TBI Treatment Limitations of the Use of NPs in TBI Therapy Conclusion References 9 Application of Nanoemulsions in Food Industries: Recent Progress, Challenges, and Opportunities Introduction Components of Nanoemulsions Oil Phase Aqueous Phase Stabilizers Approaches for Nanoemulsion Production High-Energy Approaches Low-Energy Approaches Novel Approach for the Production of Nanoemulsion Applications of Food-Grade Nanoemulsions Encapsulation of Lipophilic Functional Food Expansion of the Functional Food Sector for the Application of Edible Coatings with Lipophilic Bioactive Substances Invasion of Nanotechnology and Emulsion in Food Ingredients and Additives Purple Rice Bran Oil Nanoemulsion Fortification of Frozen Yogurt Formation of Various Phytosomes and Using Them for Delivery in Herbal Products Without Resorting to Pharmacological Adjuvants Food Packaging Use in Confectionary Comparison of Nanoemulsion from Conventional Methods Problems and Probable Solutions of Nanoemulsions Future Trends and Challenges Regulations and Safety Aspects Conclusion Conflict of Interest Acknowledgments References 10 Adverse Epigenetic Effects of Environmental Engineered Nanoparticles as Drug Carriers Introduction ENP-Based Drug-Delivery Systems Lipid-Based ENPs Polymeric ENPs Inorganic ENPs Adverse Epigenetic Effects of ENPs Overview of Epigenetic Toxicity of ENPs Epigenetic Toxicity of Metallic ENPs Epigenetic Toxicity of Nonmetallic ENPs ENP-Induced Epigenetic Toxicity Likely Mediated by ROS Conclusion References 11 Engineered Nanoparticles Adversely Impact Glucose Energy Metabolism Introduction Biological Toxicity of Engineered Nanoparticles Engineered Nanoparticles Alter Glucose Metabolism Engineered Nanoparticles Alter TCA Cycle Engineered Nanoparticles Alter Oxidative Phosphorylation Conclusion References 12 Artificial Intelligence and Machine Learning of Single-Cell Transcriptomics of Engineered Nanoparticles Introduction Impact of Nanoparticles on Single-Cell Transcriptomics and Response Heterogeneity Overview of Engineered Nanoparticles Dose-Dependent Heterogeneous Transcriptomic Responses to Quantum Dots TiO2 Nanoparticles of Different Sizes Elicit Heterogeneous Transcriptomic Responses AI and ML in scRNA-Seq Data Analysis Overview of AI and ML in Bioinformatics MRF in Differential Expression Analysis of scRNA-Seq Data Deep Learning for Inferring Gene Relationships from scRNA-Seq Data Determining Cell Differentiation and Lineage Based on Single-Cell Entropy Conclusion References 13 Toxicogenomics and Toxicological Mechanisms of Engineered Nanomaterials Introduction Genomic Responses to ENMs Transcriptomic Responses to ENMs Conclusion References 14 Carbon Nanotubes Alter Metabolomics Pathways Leading to Broad Ecological Toxicity Introduction Biomedical Application and Toxicity of Carbon Nanotubes Single-Walled Carbon Nanotubes Multi-Walled Carbon Nanotubes Metabolomics Toxicity of Carbon Nanotubes A Brief of Metabolomic Techniques Used for CNT Toxicity Profiling NMR-Based Metabolomic Profiling LC-MS-Based Metabolomic Profiling Conclusion References 15 Assessment of the Biological Impact of Engineered Nanomaterials Using Mass Spectrometry-Based MultiOmics Approaches Introduction Applications of MS for the Measurements of Proteins, PTMs, Lipids, and Metabolites Multiomics Investigation of ENM Exposure to Microorganisms Multiomics Investigation of ENM Exposure Using In Vitro Cell Culture Models Analysis of ENM Toxicity in Liver-Based Cell Models Macrophage-Based Studies of ENM Toxicity Neuronal Cell Models Reveal Potential Mechanisms of ENM-Induced Neurotoxicity Multiomics Studies Reveal Organ-Specific Toxicity at the Organismal Level Mechanisms of ENM-Induced Toxicity in the Lung Elucidation of Response Pathways Following Ingestion of ENMs ENM-Induced Metabolic Changes in the Gut: Involvement of Multiple Biological Systems ENM-Induced Metabolic Changes During Embryo Development Probing the Relationship Between Particle Size and Toxicity in Whole Animal Systems Conclusions and Perspectives Acknowledgments Compliance with Ethical Standards References 16 Current Scenario and Future Trends of Plant Nano-Interaction to Mitigate Abiotic Stresses: A Review Abbreviations Introduction Synthesis of Nanoparticles Silver Nanoparticles Aluminum Oxide Nanoparticles Copper Nanoparticles Iron Nanoparticles Carbon Nanoparticles Synthesis of Other Metal Nanoparticles Morphophysiological Effects of Nanoparticles on Plant Arabidopsis Rice Soybean Wheat Other Plants Molecular Mechanism Altered by Nanoparticles Oxidative Stresses Energy Regulation Nanoparticles Interaction with Plants Nanoparticles Interaction with Soybean Nanoparticles Interaction with Wheat Nanoparticles Interaction with Other Plants Conclusion and Future Prospects References 17 Latest Insights on Genomic and Epigenomic Mechanisms of Nanotoxicity Introduction Mechanisms of Genotoxicity Direct Genotoxicity Indirect Genotoxicity Genomic Consequences of ENM Exposure Direct DNA Damage Oxidative Damage Inflammatory Changes Impact on DNA Repair Pathways A Primer on Epigenetic Processes DNA Methylation Histone Modifications ncRNAs Epigenomic Consequences of ENM Exposure Apoptosis Inflammation and Oxidative Stress Epigenomic Changes and Cancer Development and Genomic Imprinting Importance of Duration and Dose of Exposure Evidence in Humans Is There a Need for Epigenetic Testing of ENMs? Importance of Properties of ENMs Future Perspectives References Index EULA