دسترسی نامحدود
برای کاربرانی که ثبت نام کرده اند
برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید
در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید
برای کاربرانی که ثبت نام کرده اند
درصورت عدم همخوانی توضیحات با کتاب
از ساعت 7 صبح تا 10 شب
ویرایش:
نویسندگان: Manish Kumar. Sanjeeb Mohapatra
سری: Springer Transactions in Civil and Environmental Engineering
ISBN (شابک) : 9811918465, 9789811918469
ناشر: Springer
سال نشر: 2022
تعداد صفحات: 437
[438]
زبان: English
فرمت فایل : PDF (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود)
حجم فایل: 8 Mb
در صورت تبدیل فایل کتاب Impact of COVID-19 on Emerging Contaminants: One Health Framework for Risk Assessment and Remediation به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.
توجه داشته باشید کتاب تأثیر COVID-19 بر آلایندههای نوظهور: یک چارچوب بهداشتی برای ارزیابی خطر و اصلاح نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.
این کتاب چندین دیدگاه منحصربهفرد از تأثیرات کووید-19 بر محیطزیست را با تأکید ویژه بر خطر و اصلاح آلایندههای نوظهور نشان میدهد. ایده این است که تحت یک چارچوب بهداشتی کار کنیم و نه تنها جنبههای علمی و فنی، بلکه جنبههای زیستمحیطی، قانونی و سیاستی مدیریت منابع آب را نیز درک کنیم. استرس آشکار به وقوع، سرنوشت و انتقال آلایندههای زمینزا، میکروبی و انسانی که نگرانیهای نوظهور دارند، تحت پیشنمایش این واقعیت است که استفاده از آنتیبیوتیک و ضد ویروس در طول همهگیری جهانی COVID-19 بیسابقه بوده است. در عین حال، این جلد ویرایش شده به چارچوب گستردهتر مدیریت یکپارچه منابع آب و همچنین راهبردهای کاهش و حذف میپردازد تا تصویری جامع را برای خوانندگان و سیاستگذاران ارائه کند. این مطالب به سه بخش تقسیم می شوند: الف) نظارت، وقوع، توزیع و سرنوشت آلاینده های نوظهور. ب) منبع و اثرات این آلاینده ها بر کل محیط. و ج) راهبردهای درمان، تضعیف و کاهش طبیعی.
The book brings out several unique perspectives of impacts of COVID-19 on the environment with special emphasis on the risk and remediation of emerging contaminants. Idea is to work out under the one health framework and comprehend not only scientific and technical aspects but also environmental, legal and policy aspects for water resources management. The obvious stress is given to the occurrence, fate and transport of geogenic, microbial and anthropogenic contaminants of emerging concern under the preview of the fact that antibiotic and antiviral use has been unprecedented during the global pandemic of COVID-19. At the same time, this edited volume touches upon the broader framework of integrated water resource management, as well as mitigation and removal strategies to put forward a holistic picture to the readers and policymakers. These contents are divided into three sections: a) monitoring, occurrence, distribution and fate of emerging contaminants; b) source and effects of these contaminants on the total environment; and c) treatment strategies, natural attenuation and mitigation.
Foreword Preface Acknowledgements Contents Editors and Contributors Part I Monitoring and Occurrence of Emerging Contaminants 1 A First Report of Perfluoroalkyl Substances (PFAS) in a Large West-Flowing River in Southern India 1.1 Introduction 1.2 Study Area 1.3 Materials and Methods 1.3.1 Water Sampling 1.3.2 PFSAs Extraction 1.3.3 Instrumental Analysis 1.3.4 Quality Control/Quality Assurance 1.4 Results and Discussions 1.4.1 Levels of PFAS in Other Stations 1.5 Conclusions References 2 Passive Sampling Techniques for Monitoring of Pharmaceuticals and Personal Care Products in Water Matrix: Trends from 2016 to 2020 2.1 Introduction 2.2 Methods 2.3 Passive Sampling: Theory and Calibration 2.4 Polar Organic Chemical Integrative Samplers (POCIS) 2.5 DGT 2.6 Chemcatcher® 2.7 Conclusions and Future Perspectives References 3 Distribution of Emerging Contaminants, and Antimicrobial Resistance: Occurrence, Toxicity, Risk Assessment, and Removal 3.1 Introduction 3.1.1 Occurrence, Source, and Fate of Pharmaceuticals and Personal Care Products (PPCPs) 3.2 Effect of PPCPs 3.2.1 Aquatic Life 3.2.2 Humans 3.3 Risk Assessment Studies 3.3.1 Risk Characterization 3.3.2 Constraints 3.4 Biological Remediation 3.4.1 Responsible Factors 3.4.2 Biodegradation Pathways 3.4.3 Intermediate Products Formation 3.4.4 Removal Efficiencies 3.5 Conclusions References 4 Realistic Approach for Determination Groundwater Pollution and Source Accounting 4.1 Introduction 4.2 Sources of Groundwater 4.3 Sources of Groundwater Pollution 4.3.1 Groundwater Pollution by Natural Activities 4.3.2 Groundwater Pollution by Anthropogenic Activities 4.4 Groundwater Parameters 4.5 Impacts of Groundwater Pollution 4.6 Preventive Measures for Groundwater Pollution 4.6.1 Social Accountability 4.6.2 Industrial Accountability 4.7 Future Scopes 4.8 Conclusions References Part II Sources, Effects and Ecotoxicity of Emerging Contaminants 5 Emerging Contaminants: Sources, Effects, and Treatment by New Adsorption Methods 5.1 Introduction 5.2 ECs and Associated Health Risks 5.2.1 Pharmaceutical Debris-Based ECs 5.2.2 Personal Care Products-Based ECs 5.2.3 Pesticides, Biocides, and Antimicrobials-Based ECs 5.2.4 Polycyclic Aromatic Hydrocarbon-Based ECs 5.2.5 Polychlorinated Biphenyls and Dioxins-Based ECs 5.2.6 Dyes-Based ECs 5.3 Recognition, Assessment, and Management of ECs 5.3.1 Activated Carbon-Facilitated Adsorption 5.3.2 Biochar-Facilitated Adsorption 5.3.3 Nanomaterials-Facilitated Adsorption 5.4 Conclusions and Future Perspectives References 6 Co-occurrence of Geogenic, Microbial, and Anthropogenic Emerging Contaminants: Ecotoxicity and Relative Environmental Risks 6.1 Introduction 6.1.1 Geogenic Emerging Contaminants (GECs) 6.1.2 Anthropogenic Emerging Contaminants (AECs) 6.1.3 Microbial Emerging Contaminants (MECs) 6.2 Co-occurrence of AECs, MECs, and GECs in Nature 6.3 Ecotoxicological and Relative Environmental Risks from AECs, MECs, and GECs 6.4 Conclusions References 7 IoT as an Assistive Technology for Community-Based Water Management Practices During COVID-19 Pandemic and Beyond 7.1 Introduction 7.2 Research Methodology 7.3 Government Initiatives and Water Governance 7.3.1 Rainwater Harvesting 7.3.2 Atal Bhujal Yojana 7.3.3 Interlinking River Project 7.3.4 Need for Water Governance 7.4 Need and Role of IoT in Water Management 7.5 Community-Based Water Management Practices 7.5.1 Tanks in Karnataka 7.5.2 Stepwell 7.5.3 Pyne-Ahar 7.5.4 Kuls and Khuls 7.5.5 Tanka 7.5.6 Bamboo Drip Irrigation 7.6 Discussion and Strategies 7.6.1 Strategies to Improve Water Management Using IoT 7.7 Conclusion References 8 Water Pollution Hazards of Single-Use Face Mask in Indian Riverine and Marine System 8.1 Introduction 8.2 Current State of the Problem 8.3 Composition and Different Types of Face Masks 8.3.1 Surgical Facemask 8.3.2 N95 Facemasks 8.3.3 KN95 Facemask³ 8.4 Occurrence, Fate, and Transport of Masks in Water Bodies 8.4.1 Occurrence and Detection of Micro and Nano-Plastics from Masks 8.4.2 Interaction Between Microplastics and Other Pollutants 8.4.3 Transformation and Proliferation of Antimicrobial Resistance Bacteria 8.4.4 Rivers as Transport Pathways to the Ocean 8.4.5 Partitioning and Mass Flow Behaviour in Riverine and Marine Systems 8.5 Hazards of Used Facemask on Marine Life and Human Health 8.6 Risk of COVID Spreading Through Water Bodies 8.7 Biohazard Risk Mitigation Guidelines 8.8 Future Steps to Control Microplastic Pollution Through Facemasks 8.9 Future Direction and Conclusion References 9 Impact of Arabidopsis thaliana Root Exudates on Dissimilatory Nitrate Reduction to Ammonium (DNRA) Activities in Shewanella loihica PV-4 and Agricultural Soil Enrichments 9.1 Introduction 9.2 Materials and Methods 9.2.1 Root Exudates Collection from Arabidopsis thaliana Plant and Chemical Characterization 9.2.2 Synthesis of Artificial Root Exudates 9.2.3 Evaluation of the Effects of Arabidopsis thaliana Root Exudates or Artificial Root Exudates on the Denitrification-Versus-DNRA Regulation in Shewanella loihica Cultures 9.2.4 Evaluation of the Effects of A. thaliana Root Exudates or Artificial Root Exudates on the Denitrification-Versus-DNRA Competition in Agricultural Soil Microbial Extracts 9.2.5 Analytical Procedures for Measurement of N2O, NO3 - , NO2 - and NH4 + 9.2.6 Measurement of 15 NH4 + Produced from Reduction of 15 NO3 - Via DNRA 9.2.7 Statistical Analysis 9.3 Results 9.3.1 Effects of A. Thaliana Root Exudates and Artificial Root Exudates on the Dual NO3 - Reduction Pathways in S. loihica strain PV-4 9.3.2 Effects of Artificial Root Exudates on the NO3 - Fate in Agricultural Soil Enrichments 9.4 Discussion 9.5 Implications and Future Research 9.6 Conclusions References 10 Microalgal Bioremediation of Emerging Contaminants in Domestic Wastewater 10.1 Introduction 10.2 Source and Occurrence of Emerging Contaminants 10.3 Algae-Based Domestic Sewage Treatment 10.4 Bioremediation of Emerging Contaminants 10.4.1 Bioadsorption of ECs 10.4.2 Bioaccumulation of ECs 10.4.3 Intracellular and Extracellular Biodegradation of ECs 10.4.4 Novel Approaches 10.5 Future Scenario 10.6 Conclusions References Part III Conventional and Advanced Treatment Strategies 11 Emerging Contaminants in Water and Wastewater: Remediation Perspectives and Innovations in Treatment Technologies 11.1 Introduction 11.2 Emerging Contaminants as Aquatic Environmental Hazards 11.3 Treatment Technologies 11.4 Advantages and Challenges in Conventional Treatment Technology 11.5 Advance Treatment Technology 11.5.1 Removal by Adsorption 11.5.2 Membrane-Based Processes 11.5.3 Advanced Oxidation Processes (AOPs) 11.6 Combined Treatment Technology 11.7 Future Research Perspectives 11.8 Conclusion References 12 Adsorption–Photocatalysis Dual-Modality Approach for Removal of PPCPs from Aquatic Environment 12.1 Introduction 12.2 Adsorption–Photocatalysis—Dual-Modality Approach 12.3 Photocatalysts Used for Environmental Remediation 12.4 Application to Real Water Matrices 12.5 Challenges in Designing Adsorption–Photocatalysis Material 12.6 Concluding Remark and Future Needs References 13 Components of Aquaculture as Sources of Environmental Pollution and Available Remedial Measures 13.1 Introduction 13.2 Aquaculture Components as Sources of Pollution 13.2.1 Aquaculture Ingredients (Feed, Fertilizer, Chemicals, Etc.) 13.2.2 Animal Excretions (Faeces, Ammonia, Methane, CO2 Etc.) 13.2.3 Inedible Wastes 13.3 Remedial Measures for Aquaculture Waste Removal 13.3.1 Innovative Culture Methods 13.3.2 Physical, Chemical, and Microbial Treatment of Wastewater 13.3.3 Using Aquaculture Wastewater for Irrigating Agriculture Crops 13.3.4 Using Aquaculture Wastewater for Culturing Algae (Algiculture) 13.4 Conclusions References 14 Recent Advances in Wetland-Based Tertiary Treatment Technologies for PPCPs Removal from Wastewater 14.1 Introduction 14.2 Occurrence of PPCPs in Wastewater and STPs 14.3 Existing Treatment Technologies for PPCPs Removal 14.3.1 Constructed Wetlands (CWs) for PPCPs Removal 14.3.2 PPCPs Properties Affecting the Removal Pathway during Treatment by CWs 14.4 Feasibility of Hybrid Systems Comprising CWs Combined with Other Treatment Processes 14.4.1 Hybrid CW Systems 14.4.2 Hybrid Treatment Systems Combining CW with Other Treatment Processes 14.4.3 Hybrid Systems Other Than CWs for PPCPs Removal 14.5 Conclusion and Future Prospects References 15 Removal of Free Cyanide (CN−) from Water and Wastewater Using Activated Carbon: A Review 15.1 Introduction 15.2 Free Cyanide (CN−) Removal by Activated Carbon 15.2.1 Raw Activated Carbons for CN− Removal 15.2.2 CN− Removal by Metal Impregnated AC 15.2.3 Functional Group Incorporated AC for CN− Removal 15.2.4 Biological Conjugation of AC for Simultaneous Adsorption and Biodegradation 15.3 Mechanism of Cyanide Removal by Activated Carbon 15.3.1 Role of AC Surface Functional Groups on Adsorption and Oxidation Removal of Cyanide 15.3.2 Complexation of Cyanide with Metal Ions and Oxidation of M-CN Complexes 15.3.3 Adsorption and Oxidation Over Impregnated/Ionic Metal Surfaces 15.4 Modeling the Sorption of Cyanide onto Carbon Surface 15.4.1 Adsorption Isotherm Modeling 15.4.2 Kinetics Modeling 15.5 Effect of Process Parameters on Cyanide Adsorption Over Activated Carbon 15.5.1 Effect of Carbon Particle Size 15.5.2 Effect of Aeration/Agitation 15.5.3 Effect of Solution pH 15.5.4 Effect of Temperature 15.5.5 Effect of Contact Time 15.5.6 Effect of Competitive Anions 15.6 Regeneration of Cyanide Ladenned AC 15.7 Cost Evaluation on the Use of Activated Carbon for Treatment of Cyanide Bearing Water and Wastewater 15.8 Conclusions and Future Prospects References 16 Metal Carbides as Photocatalyst for Removal of Organic Effluents from Aqueous Solution 16.1 A Brief Introduction to the Status of Water Pollution and Industrial Discharge 16.2 Fundamentals and Mechanism of Photocatalysis 16.3 Introduction to Transition Metal Carbides (TMCs) 16.4 Transition Metal Carbide: A Potential Candidate as a Catalyst 16.5 Preparation Techniques of TMCs: Low-Temperature Solid-State Reaction 16.6 Structural Properties of TMCs 16.7 TMCs: Remedy for Decomposition of Organic Pollutants 16.7.1 Effect of Concentration (Pollutant and Catalyst) 16.7.2 Effect of Illumination Source 16.7.3 Effect of catalyst’s Composition 16.8 Possible Degradation Mechanism 16.9 Concluding Remarks References 17 Tackling COVID-19 in Wastewater: Treatment Technologies for Developing Nations 17.1 Introduction 17.2 Wastewater Treatment Processes for SARS-CoV-2 Control 17.2.1 SARS-CoV-2 in Wastewater 17.2.2 Surveillance of SARS-CoV-2 in Different Temperatures 17.2.3 Potential Fate of SARS-CoV-2 in the Water Cycle—Worldwide Perspective 17.2.4 Wastewater Treatment Technologies 17.3 Disinfection Techniques 17.3.1 Chlorine-Based Disinfection for SARS-CoV-2 Control 17.3.2 Ozonation 17.3.3 Ultraviolet (UV) Irradiation 17.3.4 Improvement of Disinfection Properties 17.3.5 Other Remedial Disinfection Actions to Control the Epidemic 17.4 Future Perspectives 17.5 Conclusion References