دسترسی نامحدود
برای کاربرانی که ثبت نام کرده اند
برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید
در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید
برای کاربرانی که ثبت نام کرده اند
درصورت عدم همخوانی توضیحات با کتاب
از ساعت 7 صبح تا 10 شب
ویرایش: نویسندگان: Keshari. Kayvan R., Lewis. Jason S سری: ISBN (شابک) : 9783319614014, 9783319613994 ناشر: Springer سال نشر: 2018 تعداد صفحات: 335 زبان: English فرمت فایل : PDF (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود) حجم فایل: 14 مگابایت
کلمات کلیدی مربوط به کتاب تصویربرداری و متابولیسم: متابولیسم -- اختلالات -- تصویربرداری
در صورت تبدیل فایل کتاب Imaging and metabolism به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.
توجه داشته باشید کتاب تصویربرداری و متابولیسم نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.
این کتاب تکنیک های تصویربرداری مولکولی پیشرفته ای را ارائه می دهد که برای ارزیابی عملکرد متابولیک استفاده می شود. این کتاب با پوشش روشهای پیشرفته، ارزیابی طیف گستردهای از بیماریها را مورد بحث قرار میدهد که دارای یک جزء متابولیک هستند، از جمله سرطان، شرایط التهابی، دیابت، تخریب عصبی، و اختلالات قلبی عروقی. تصویربرداری یک دیدگاه کمی برای ارزیابی عملکرد متابولیک ارائه می دهد و تجزیه و تحلیل ژنتیکی اختلالات مربوط به متابولیسم مختل را تکمیل می کند. این کتاب که در چهار بخش سازماندهی شده است، اصول اساسی در تکنیک های تصویربرداری مولکولی را برجسته می کند. رویکردهای تصویربرداری متابولیک، از جمله تصویربرداری تشدید مغناطیسی (MRI)، توموگرافی کامپیوتری با انتشار تک فوتون (SPECT)، توموگرافی انتشار پوزیترون (PET)، و روشهای ترکیبی. بیماری های متابولیک؛ و چشم اندازهای آینده تصویربرداری و متابولیسم با کمک مقامات برجسته در رادیولوژی، انکولوژی، قلب و اعصاب، کاوشی پیشگام در مورد نقش روش های تصویربرداری در ارزیابی وضعیت فیزیولوژیکی سلول های غیر طبیعی و تشخیص بیماری است.
>This book presents advanced molecular imaging techniques used to assess metabolic function. Covering state-of-the art modalities, it discusses the evaluation of a wide range of diseases that have a metabolic component, including cancer, inflammatory conditions, diabetes, neurodegeneration, and cardiovascular disorders. Imaging provides a quantitative perspective to the assessment of metabolic function and complements genetic analysis of disorders related to disrupted metabolism. Organized into four parts, the book highlights basic principles in molecular imaging techniques; metabolic imaging approaches, including magnetic resonance imaging (MRI), single-photon emission computed tomography (SPECT), positron emission tomography (PET), and hybrid modalities; metabolic diseases; and future perspectives. Featuring contributions from leading authorities in radiology, oncology, cardiology, and neurology, Imaging and Metabolism is a pioneering exploration of the role of imaging modalities in assessing the physiological status of abnormal cells and diagnosing disease.
Foreword for Imaging and Metabolism Preface: Imaging and Metabolism Contents Contributors Part I: Basic Principles 1: Molecular Imaging and Molecular Imaging Technologies 1.1 Definition of the Field 1.2 Molecular Imaging Technologies 1.2.1 History 1.2.2 Nuclear Imaging 1.2.2.1 PET Imaging: Probes and Principles 1.2.2.2 SPECT Imaging: Probes and Principles 1.2.3 Magnetic Resonance Imaging 1.2.4 Ultrasound Imaging 1.2.5 Optical Imaging 1.2.5.1 Fluorescence Imaging: Probes and Principles 1.2.5.2 Bioluminescence Imaging 1.2.5.3 Cerenkov Luminescence Imaging 1.2.6 Future Perspectives References 2: A Topical Report on the Design Principles of Metabolism 2.1 Metabolism: Basic Biochemical Principles and Fundamental Concepts 2.2 Cell-Autonomous Metabolism 2.3 Systemic Metabolism 2.4 How Metabolic Processes Go Wrong Leading to Disease 2.5 Concluding Remarks References Part II: Metabolic Imaging Approaches 3: Overview of Positron-Emission Tomography Tracers for Metabolic Imaging 3.1 Introduction 3.1.1 Basics of PET Imaging 3.1.2 Tracer Principle and Specific Activity 3.1.3 Radionuclides 3.1.4 Limitations of PET 3.2 Carbohydrates 3.2.1 Carbohydrate-Based PET Tracers 3.2.2 Oncologic Imaging 3.2.3 Neuroimaging 3.2.4 Cardiac Imaging 3.2.5 Brown Adipose Tissue 3.3 Amino Acids 3.3.1 Neuro-Oncology 3.3.2 Prostate Cancer 3.3.3 Neuroendocrine Tumors 3.3.4 Glutaminolysis 3.3.5 Protein Synthesis 3.4 Nucleoside Analogs 3.4.1 Oncologic Imaging 3.5 Fatty Acids 3.5.1 Oncologic Imaging 3.5.2 Cardiac Imaging 3.5.3 Long-Chain Fatty Acid Cardiac Imaging 3.6 Membrane Synthesis 3.6.1 Oncologic Imaging 3.7 Hypoxia 3.8 Summary References 4: Introduction: MRI/MRS as Metabolic Imaging Tools 4.1 Basics of MRI/MRS Techniques 4.1.1 Magnetic Resonance 4.1.2 Relaxation and Tissue Contrast 4.1.3 Spatial Encoding and MRI 4.1.4 Combining Spatial Encoding and Chemical Information: MR Spectroscopic Imaging 4.1.5 Magnetic Resonance Spectroscopy Beyond Protons 4.2 Magnetic Resonance Spectroscopy: Clinical Application and Innovation 4.2.1 First Application: Nuclei In Situ 4.2.2 Ramping Up the Signal: Hyperpolarized MRS 4.3 Chemical Exchange Saturation Transfer (CEST) 4.4 Metabolic Imaging: Other MR Techniques References 5: Metabolic Imaging Approaches: Optical Imaging 5.1 Imaging Oxygenation 5.1.1 Deep-Tissue Optical Imaging of Oxygenation 5.1.1.1 Introduction 5.1.1.2 Diffuse Optical Imaging and Spectroscopy 5.1.1.3 Diffuse Optics for Monitoring Metabolic Tumor Response to Chemotherapy in Breast Cancer 5.1.1.4 Diffuse Optics for Tracking Oxygenation Levels in the Brain 5.1.1.5 Diffuse Optics for Small Animal Imaging 5.1.2 High-Resolution Imaging of Blood Oxygenation In Vivo 5.1.2.1 Photoacoustic Microscopy 5.1.2.2 Two-Photon and Confocal Microscopy 5.1.2.3 Optical Coherence Tomography 5.2 Autofluorescence Microscopy of Metabolism 5.2.1 Introduction 5.2.2 NADH and FAD Autofluorescence Properties 5.2.3 Role of NADH and FAD in Cellular Respiration 5.2.4 Physiological Origins of Variations in NADH and FAD 5.2.5 Instrument Requirements for Redox Ratio Imaging 5.2.6 Instrumentation Requirements for FLIM Imaging 5.2.7 Summary 5.3 Optical Metabolic Contrast Agents 5.3.1 Introduction 5.3.2 Relative Uptake of Nutrients 5.3.3 Enzyme Activity 5.3.4 Local Chemical Environment 5.3.5 Cell Signaling References Part III: Metabolic Diseases 6: Cancer Metabolism 6.1 Introduction 6.1.1 The Warburg Effect Is a Hallmark of Cancer Cells 6.1.2 Cancer-Associated Alterations in Glycolysis 6.1.3 Cancer-Associated Alterations in Amino Acid Metabolism 6.1.4 Cancer Cells Reprogram One-Carbon Metabolism 6.2 Oncogenic Reprogramming of Metabolism 6.2.1 PI3K/AKT/mTOR Pathway Rewires Metabolism in Glioblastomas (GBMs) 6.2.2 Isocitrate Dehydrogenase Is Mutated in Gliomas 6.2.3 MYC Is a Central Metabolic Regulator in Many Tumors 6.2.4 Renal Carcinomas Show Mutations in Metabolic Regulators 6.3 Therapeutic Targeting of Cancer Metabolism 6.3.1 Targeting Glucose Uptake and Glycolysis 6.3.2 Inhibiting Glutamine Metabolism 6.3.3 Mutant IDH Inhibitors 6.4 Targeting Pyruvate Dehydrogenase 6.5 Alternative Strategies to Modulate Cancer Metabolism 6.6 Summary References 7: Inflammation and Immune Metabolism 7.1 Introduction 7.1.1 Biology and Function of Inflammation 7.1.1.1 Step 1: Triggering Inflammatory Responses 7.1.1.2 Step 2: Activation of the Innate Immune System 7.1.1.3 Step 3: Recruitment of Immune Cells 7.1.1.4 Step 4: Involvement of the Adaptive Immune System 7.1.1.5 Step 5: Systemic Inflammatory Responses 7.1.2 Requirements to Image Inflammation 7.1.2.1 The Unique Features of Inflammation 7.1.2.2 Choice of Target 7.2 Metabolism in Relation to Immune Cell Function 7.2.1 Lymphocytes 7.2.2 Macrophages 7.2.3 Neutrophils 7.3 Targets for Imaging Immune Cell Metabolism 7.3.1 Imaging Cell-Surface Receptors and Transporters 7.3.1.1 Translocator Protein 7.3.1.2 Iron-Binding Proteins 7.3.1.3 Scavenger Receptor 7.3.1.4 Folate Receptor 7.3.1.5 Endocytosis 7.3.2 Imaging Specific Metabolic Substrates 7.3.2.1 Glucose Metabolism 7.3.2.2 DNA Synthesis 7.3.2.3 Lipid Synthesis 7.3.2.4 Amino Acid Metabolism 7.3.3 Imaging Enzyme Activity 7.3.3.1 Myeloperoxidase Activity 7.3.3.2 Cyclooxygenase Activity 7.3.3.3 Elastase and Matrix Metalloproteinase Activity 7.3.4 Imaging Metabolites 7.4 Future Developments 7.4.1 Integrative Analysis of Multiscale Data 7.4.2 Manipulation of Immune Cell Metabolism 7.4.3 Hyperpolarized MR 7.4.4 Hybrid PET/MR Imaging References 8: Imaging in Diabetes 8.1 Introduction 8.1.1 Physiology of the Pancreas/Islets 8.1.2 Disease Background 8.1.3 Role of Imaging in Diabetes 8.2 Imaging Modalities in Diabetes 8.3 Imaging Limitations and Design Considerations for Pancreatic Imaging 8.3.1 MRI 8.3.2 PET/SPECT 8.3.2.1 Targeted Molecular Imaging 8.3.2.2 Nuclear Imaging of Insulitis 8.3.3 Fluorescence 8.3.3.1 Fluorescence Imaging for Molecular Probe Design 8.3.4 Ultrasonography and Computed Tomography 8.3.5 Multimodal Imaging 8.4 Molecular Imaging Outside the Pancreas in Diabetes 8.5 Conclusions and Future Directions References 9: Brain Disorders 9.1 Introduction and Scope 9.2 History 9.3 Description of Modern Imaging Approaches 9.4 Categories of Metabolic Disorders 9.4.1 Central Energy Metabolism 9.4.2 Urea Cycle Disorders 9.4.3 Cholesterol Synthesis Disorders 9.4.4 Amino Acid Metabolism Disorders 9.4.5 Organic Acidosis Disorders 9.4.6 Peroxisome Disorders 9.4.7 Lysosomal Storage Disorders 9.5 Multifactorial Disorders and Neurodegenerative Diseases 9.5.1 Alzheimer’s Disease 9.5.2 Parkinson’s Disease 9.5.3 Differential Diagnosis of PD Based on Imaging 9.5.4 Diabetes 9.5.5 Depression 9.6 Concluding Remarks References 10: Fatty Liver Disease 10.1 Introduction 10.2 Ultrasound 10.2.1 Typical B-Mode Ultrasound Imaging 10.2.2 Measuring Liver Stiffness with Ultrasound 10.3 Computed Tomography 10.4 Magnetic Resonance 10.4.1 1H MRS and Fat Fraction 10.4.2 Fat Imaging and the Dixon Method 10.4.3 Magnetic Resonance Elastography 10.4.4 Other MRI-Based Techniques 10.5 Preclinical and Investigational Imaging 10.5.1 Magnetic Resonance 10.5.2 Positron Emission Tomography (PET) 10.5.3 Optical Imaging 10.6 Summary References 11: Imaging Myocardial Metabolism 11.1 Introduction 11.2 Energy Production and Related Metabolic Pathways 11.2.1 Acetyl-CoA from β-Oxidation of Ketones and Fatty Acids 11.2.2 Pyruvate and Lactate 11.2.3 Glucose and Glycogen 11.2.4 Anaplerosis 11.2.5 Compartmentation of Pyruvate Metabolism 11.3 Radionuclide Methods to Image Metabolism 11.3.1 Single Photon Emission Computed Tomography 11.3.2 Positron Emission Tomography 11.3.3 Myocardial Oxygen Consumption 11.3.4 Carbohydrate Metabolism 11.3.5 Fatty Acid Metabolism 11.4 Hyperpolarized 13C 11.4.1 Probes and Pathways 11.4.2 Pyruvate 11.4.3 Lactate 11.4.4 Acetate and Butyrate: Substrates That Bypass PDH 11.4.5 Substrate Competition in Hyperpolarization Exams 11.5 Complementary Information 11.5.1 Methodologic Advances 11.5.2 Applications and Potential Synergies 11.5.2.1 Myocardial Ischemia PET and SPECT 13C Hyperpolarization Potential Synergies 11.5.2.2 Myocardial Hypertrophy and Cardiomyopathies SPECT and PET 13C Hyperpolarization Potential Synergies 11.5.2.3 Obesity, Insulin Resistance, and Diabetes PET HP MR Potential Synergies 11.6 The Future: Validation and the Potential of Combined PET and 13C-HP References 12: Other Metabolic Syndromes 12.1 Introduction 12.2 Neonatal-Onset Metabolic Disease 12.2.1 Acute Toxicity: Aminoacidopathies, Organic Acidemias, and Urea Cycle Disorders 12.2.1.1 Aminoacidopathies Maple Syrup Urine Disease (MSUD) MSUD: Imaging Nonketotic Hyperglycinemia (NKH) NKH: Imaging 12.2.1.2 Organic Acidemias Methylmalonic Acidemia (MMA) MMA: Imaging Propionic Academia (PA) Glutaric Aciduria Type I Glutaric Aciduria Type I: Imaging 12.2.1.3 Urea Cycle Disorders Urea Cycle Defects: Imaging 12.3 Chronic Encephalopathies of Infancy 12.3.1 Aminoacidopathies, Peroxisomal Disorders, Mitochondrial Disorders, Lysosomal Disorders, and Lipidoses 12.3.1.1 Aminoacidopathies Phenylketonuria (PKU) PKU: Imaging 12.3.1.2 Peroxisomal Disorders Zellweger Syndrome Zellweger Syndrome: Imaging X-Linked ALD X-Linked ALD: Imaging 12.3.1.3 Mitochondrial Disorders 12.4 Focal Lesions in Deep Gray Matter Structures 12.4.1 Leigh Disease 12.5 Strokes Crossing Vascular Territories 12.6 White Matter Changes 12.7 Pyruvate Dehydrogenase Deficiency 12.7.1 Lysosomal Disorders 12.7.1.1 Neuronal Ceroid Lipofuscinoses 12.7.1.2 Neuronal Ceroid Lipofuscinoses: Imaging 12.7.1.3 Sphingolipidoses Krabbe’s Disease Krabbe’s Disease: Imaging 12.7.1.4 Metachromatic Leukodystrophy 12.7.1.5 Metachromatic Leukodystrophy: Imaging 12.7.1.6 Gangliosidoses 12.7.1.7 Tay-Sachs: Imaging 12.7.1.8 Gaucher Disease 12.7.1.9 Gaucher Disease: Imaging 12.7.1.10 Niemann-Pick Type C 12.7.1.11 NPC: Imaging 12.7.2 Lipid Storage Disorders 12.7.2.1 Mucolipidosis 12.7.2.2 Mucolipidosis: Imaging Mucolipidosis Type II (I-Cell Disease) Mucolipidosis Type IV 12.7.2.3 CPT II Deficiency 12.7.2.4 CPT II Deficiency: Imaging 12.7.3 Mucopolysaccharidoses 12.8 Brain Injury due to Substrate Depletion 12.8.1 Creatine Deficiency 12.8.2 Creatine Deficiency Disorders 12.8.3 Cerebral Creatine Deficiency: Imaging 12.8.4 Molybdenum Cofactor Deficiency 12.8.5 Molybdenum Cofactor Deficiency: Imaging 12.9 Other Disorders 12.9.1 Rett Syndrome (RS) 12.9.2 Rett Syndrome: Imaging 12.9.3 Smith-Lemli-Opitz Syndrome 12.9.4 Smith-Lemli-Opitz Syndrome: Imaging 12.9.5 Alexander Disease 12.9.6 Alexander: Imaging 12.9.7 Biotinidase Deficiency 12.9.8 Biotinidase Deficiency: Imaging References Index