دسترسی نامحدود
برای کاربرانی که ثبت نام کرده اند
برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید
در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید
برای کاربرانی که ثبت نام کرده اند
درصورت عدم همخوانی توضیحات با کتاب
از ساعت 7 صبح تا 10 شب
ویرایش:
نویسندگان: Tao Lei. Asoke K. Nandi
سری:
ISBN (شابک) : 9781119859000
ناشر: Wiley
سال نشر: 2023
تعداد صفحات: 334
زبان: English
فرمت فایل : PDF (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود)
حجم فایل: 137 مگابایت
در صورت تبدیل فایل کتاب Image Segmentation. Principles, Techniques, and Applications به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.
توجه داشته باشید کتاب تقسیم بندی تصویر اصول، تکنیک ها و کاربردها نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.
Cover Title Page Copyright Page Brief Contents Contents About the Authors Preface Acknowledgment List of Symbols and Abbreviations List of Acronyms Part I Principles Chapter 1 Introduction 1.1 Preliminary Concepts 1.2 Foundations of Image Segmentation 1.2.1 Pixel-Based Image Segmentation 1.2.2 Contour-Based Image Segmentation 1.2.3 Region-Based Image Segmentation 1.2.4 Neural Network–Based Image Segmentation 1.3 Examples: Image Segmentation 1.3.1 Automatic Drive 1.3.2 Medical Image Analysis 1.3.3 Remote Sensing 1.3.4 Industrial Inspection 1.4 Assessment of Image Segmentation 1.5 Discussion and Summary References Chapter 2 Clustering 2.1 Introduction 2.2 K-Means 2.3 Fuzzy C-means Clustering 2.4 Hierarchical Clustering 2.5 Spectral Clustering 2.6 Gaussian Mixed Model 2.7 Discussion and Summary References Chapter 3 Mathematical Morphology 3.1 Introduction 3.2 Morphological Filtering 3.2.1 Erosion and Dilation 3.2.2 Opening and Closing 3.2.3 Basic Morphological Operation for Grayscale Images 3.2.4 Composed Morphological Filters 3.3 Morphological Reconstruction 3.3.1 Geodesic Dilation and Erosion 3.3.2 Reconstruction of Opening Operations and Closing Operations 3.4 Watershed Transform 3.4.1 Basic Concepts 3.4.2 Watershed Segmentation Algorithms 3.5 Multivariate Mathematical Morphology 3.5.1 Related Concepts 3.5.2 Duality of Grayscale Mathematical Morphology 3.5.3 Ordering Relations 3.5.4 Multivariate Dual Morphological Operators 3.6 Discussion and Summary References Chapter 4 Neural Networks 4.1 Artificial Neural Networks 4.1.1 Overview 4.1.2 Neuron Model 4.1.3 Single-Layer Perceptron and Linear Network 4.1.3.1 Single Layer Perceptron 4.1.3.2 Perceptron Learning Algorithm 4.1.3.3 Linear Neural Network 4.2 Convolutional Neural Network 4.2.1 Convolution and its Application in Images 4.2.1.1 Definition 4.2.1.2 One-Dimensional Convolution in Discrete Domain 4.2.1.3 Two-Dimensional Convolution in Discrete Domain 4.2.1.4 Extended Convolution Operation 4.2.2 Convolutional Network Architecture and Parameter Learning 4.2.2.1 Convolutional Network Architecture 4.2.2.2 Convolution Layer 4.2.2.3 Pooling Layer 4.2.2.4 Full Connection Layer 4.2.2.5 Parameter Learning 4.2.2.6 Back-Propagation Algorithm 4.3 Graph Convolutional Network 4.3.1 Overview 4.3.2 Convolutional Network over Spectral Domains 4.3.3 Chebyshev Network 4.3.4 Graph Convolutional Network 4.4 Discussion and Summary References Part II Methods Chapter 5 Fast and Robust Image Segmentation Using Clustering 5.1 Introduction 5.2 Related Work 5.2.1 Objective Function of FCM Based on Neighborhood Information 5.2.2 Membership Correction Based on Local Distance 5.3 Local Spatial Information Integration to FCM 5.3.1 Fast and Robust FCM Based on Histogram 5.3.2 Morphological Reconstruction 5.4 Membership Filtering for FCM 5.5 Discussion and Summary 5.5.1 Results on Synthetic Images 5.5.2 Results on Real Images 5.5.3 Results on Color Images 5.5.4 Running Time 5.5.5 Summary References Chapter 6 Fast Image Segmentation Using Watershed Transform 6.1 Introduction 6.2 Related Work 6.2.1 Morphological Opening and Closing Reconstructions 6.2.2 Multiscale and Adaptive Mathematical Morphology 6.2.3 Seeded Segmentation 6.2.4 Spectral Segmentation 6.3 Adaptive Morphological Reconstruction (AMR) 6.3.1 The Presented AMR 6.3.2 The Monotonic Increasing-ness Property of AMR 6.3.3 The Convergence Property of AMR 6.3.4 The Algorithm of AMR 6.4 AMR for Seeded Image Segmentation 6.4.1 Seeded Image Segmentation 6.4.2 Seed-Based Spectral Segmentation 6.5 Discussion and Summary 6.5.1 Discussion 6.5.2 Summary References Chapter 7 Superpixel-Based Fast Image Segmentation 7.1 Introduction 7.2 Related Work 7.2.1 Fuzzy Clustering with Adaptive Local Information 7.2.2 FCM Based on Histogram of Gray Images 7.3 Superpixel Integration to FCM 7.3.1 Superpixel Based on Local Feature 7.3.2 Superpixel-Based Fast FCM 7.4 Discussion and Summary 7.4.1 Comparison with Other Algorithms 7.4.2 Parameter Setting 7.4.3 Results on Synthetic Image 7.4.4 Results on Real Images 7.4.5 Execution Time 7.4.6 Conclusions References Part III Applications Chapter 8 Image Segmentation for Traffic Scene Analysis 8.1 Introduction 8.2 Related Work 8.2.1 Convolutional Neural Networks for Image Classification 8.2.2 Traffic Scene Semantic Segmentation Using Convolutional Neural Networks 8.3 Multi-Scale Feature Fusion Network for Scene Segmentation 8.3.1 Multi-Scale Feature Fusion Using Dilated Convolution 8.3.2 Encoder-Decoder Architecture 8.3.3 Experiments 8.4 Self-Attention Network for Scene Segmentation 8.4.1 Non-local attention Module 8.4.2 Dual Attention Module 8.4.3 Criss-Cross Attention 8.4.4 Multi-scale Non-local Module 8.4.5 Experiments 8.5 Discussion and Summary 8.5.1 Network Architecture Search 8.5.2 Compact Networks 8.5.3 Vision Transformer References Chapter 9 Image Segmentation for Medical Analysis 9.1 Introduction 9.2 Related Work 9.2.1 Traditional Approaches for Medical Image Segmentation 9.2.2 Deep Learning for Medical Image Segmentation 9.3 Lightweight Network for Liver Segmentation 9.3.1 Network Compression 9.3.2 3D Deep Supervision 9.3.3 Experiment 9.3.3.1 Data Set Preprocessing 9.3.3.2 Training 9.3.3.3 Evaluation and Results 9.4 Deformable Encoder–Decoder Network for Liver and Liver-Tumor Segmentation 9.4.1 Deformable Encoding 9.4.2 Ladder-ASPP 9.4.3 Loss Function 9.4.4 Postprocessing 9.4.5 Experiment 9.4.5.1 Data Set and Preprocessing 9.4.5.2 Experimental Setup and Evaluation Metrics 9.4.5.3 Ablation Study 9.4.5.4 Experimental Comparison on Test Data Sets 9.4.5.5 Model-Size Comparison 9.5 Discussion and Summary References Chapter 10 Image Segmentation for Remote Sensing Analysis 10.1 Introduction 10.2 Related Work 10.2.1 Threshold Segmentation Methods 10.2.2 Clustering Segmentation Methods 10.2.3 Region Segmentation Methods 10.2.4 Segmentation Methods Using Deep Learning 10.3 Unsupervised Change Detection for Remote Sensing Images 10.3.1 Image Segmentation Using Image Structuring Information 10.3.2 Image Segmentation Using Gaussian Pyramid 10.3.3 Fast Fuzzy C-Means for Change Detection 10.3.4 Postprocessing for Change Detection 10.3.5 The Proposed Methodology 10.3.6 Experiments 10.3.6.1 Data Description 10.3.6.2 Experimental Setup 10.3.6.3 Experimental Results 10.3.6.4 Experimental Analysis 10.4 End-to-End Change Detection for VHR Remote Sensing Images 10.4.1 MMR for Image Preprocessing 10.4.2 Pyramid Pooling 10.4.3 The Network Structure of FCN-PP 10.4.4 Experiments 10.4.4.1 Data Description 10.4.4.2 Experimental Setup 10.4.4.3 Experimental Results 10.4.4.4 Experimental Analysis 10.5 Discussion and Summary References Chapter 11 Image Segmentation for Material Analysis 11.1 Introduction 11.2 Related Work 11.2.1 Metal Materials 11.2.2 Foam Materials 11.2.3 Ceramics Materials 11.3 Image Segmentation for Metal Material Analysis 11.3.1 Segmentation of Porous Metal Materials 11.3.2 Classification of Holes 11.3.3 Experiment Analysis 11.4 Image Segmentation for Foam Material Analysis 11.4.1 Eigenvalue Gradient Clustering 11.4.2 The Algorithm 11.4.3 Experiment Analysis 11.5 Image Segmentation for Ceramics Material Analysis 11.5.1 Preprocessing 11.5.2 Robust Watershed Transform 11.5.3 Contour Optimization 11.5.4 Experiment Analysis 11.6 Discussion and Summary References Index EULA