دسترسی نامحدود
برای کاربرانی که ثبت نام کرده اند
برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید
در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید
برای کاربرانی که ثبت نام کرده اند
درصورت عدم همخوانی توضیحات با کتاب
از ساعت 7 صبح تا 10 شب
ویرایش: نویسندگان: Rajeev Kumar Chauhan (editor), Kalpana Chauhan (editor) سری: ISBN (شابک) : 9780323850643, 0323850642 ناشر: Academic Press is an Imprint of Elsevier سال نشر: 2021 تعداد صفحات: 222 زبان: English فرمت فایل : PDF (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود) حجم فایل: 20 مگابایت
در صورت تبدیل فایل کتاب Image Processing for Automated Diagnosis of Cardiac Diseases به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.
توجه داشته باشید کتاب پردازش تصویر برای تشخیص خودکار بیماری های قلبی نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.
Front matter Copyright Contributors Preface Acknowledgment Cardiac diseases and their diagnosis methods Introduction Heart valves Mitral valve regurgitation Heart diseases Coronary artery disease (CAD) Myocardial infraction (MI) High blood pressure or hypertension (HBP) Heart valve disease Cardiomyopathy or heart muscle disease Pericarditis Rheumatic heart disease (RHD) Mitral valve diseases Mitral regurgitation (MR) Causes of mitral regurgitation Mitral regurgitation signs and symptoms Mitral regurgitation diagnosis Cardiac disease diagnosis methods Principles of echo Modes of echocardiography M-mode echocardiography Two-dimensional echocardiography Doppler echocardiography Two-dimensional recording techniques Advantages and limitations of echocardiography Advantages Limitations Results and analysis Discussion Conclusions References Cardiac multimodal image registration using machine learning techniques Introduction Image registration Medical image registration Cardiac image registration Classification of image registration methods Datasets Convolutional neural networks for image registration Cardiac image registration multimodalities MR-based image registration CT X-ray-based registration Ultrasound-based registration Evaluation of multimodal imaging Conclusion and discussion References Anatomical photo representations for cardiac imaging training Clinical background and motivation The anatomy and function of the heart The cardiac cycle and electrical activation Cardiac magnetic resonance (CMR) Electrocardiogram gating Respiratory motion Cine cardiac MR imaging Cardiac MR imaging planes Indices of cardiac function Cardiac ultrasound imaging Technical challenges in multimodal cardiac image analysis and objectives Limited through-plane resolution and imaging artifacts in CMR Imaging artifacts in cardiac 3D-US images Identification of correspondences in multi-modal imaging data User interaction requirement in semi-automatic segmentation methods Edge-maps for multi-modal image analysis Automatic anatomical landmark localization in CMR images Cardiac MR Image super-resolution with convolutional neural networks Learning anatomical shape priors with convolutional neural networks Conclusions References Cardiac function review by machine learning approaches Cardiac MR and ultrasound image segmentation Energy minimization methods Gaussian mixture models Multiatlas segmentation methods Anatomical priors in cardiac segmentation Super-resolution in magnetic resonance images Variational inverse methods Regression models for image super-resolution Multimodal cardiac image registration Transformation models and optimization techniques Image similarity criteria in multimodal image registration Evaluation of image registration algorithms Machine learning models in image analysis Ensemble of decision trees (decision forests) Convolutional neural networks Applications of ML models in medical imaging Decision forests in medical imaging Convolutional neural networks in medical imaging Medical image segmentation Image super-resolution and other applications Incorporating anatomical priors in neural networks Current limitations Conclusion References Despeckling in echocardiographic images using a hybrid fuzzy filter Introduction Background of despeckle filtering Mathematical model of speckle noise for ultrasound images Despeckling filters Local adaptive filters Local statistics filtering Anisotropic diffusion filter Fuzzy filter (TMED, TMAV, ATMED) Nonlocal means filter Proposed hybrid fuzzy filters (HFFs) Ultrasound image database Image quality metrics (IQM) for performance evaluation Experimental results and discussion Conclusion Acknowledgment References Impetus to machine learning in cardiac disease diagnosis Impetus to machine learning in cardiac disease diagnosis Introduction to medical imaging Role of computers in medical imaging Computer-based medical image analysis Computer-aided detection Computer-based image retrieval (CBIR) Radiomics and radio genomics Introduction to machine learning Categories of machine learning Supervised learning Unsupervised learning Semisupervised learning Reinforcement learning Machine learning algorithms Artificial neural networks (ANN) Logistic regression (LR) Support vector machine (SVM) Naive Bayes Random Forest (RF) Impact of machine learning in everyday life Energy Arts and culture Financial services Healthcare Machine learning in medical imaging Applications of machine learning in disease diagnosis Machine learning in cardiac disease diagnosis Potential challenges of using machine learning in disease diagnosis Constraints of using machine learning How to develop a machine learning model for the medical domain? Validation and performance assessment Results and discussions Conclusion References Wavelet transform for cardiac image retrieval Introduction Discrete wavelet transform Orthogonal wavelet transform Haar wavelet transform Daubechies wavelet transform Biorthogonal wavelet transform Lifting scheme-based wavelet transform Gabor wavelet transform Result analysis Texture representation Similarity measurement Evaluation criteria Conclusion References AI-based diagnosis techniques for cardiac disease analysis and predictions Introduction AI-based cardiac disease diagnosis techniques Artificial intelligence in cardiology AI techniques for detecting cardiovascular disease ANNs for predicting cardiac disease Cardiac disease prediction based on genetic algorithms Neuro-fuzzy technique for predicting cardiac disease Future of automated diagnosis of cardiac disease Clinical applications Challenges and recent advances in cardiac simulation Automated diagnosis of coronary artery disease using LDA, PCA, ICA, and DWT Cardiovascular disease and COVID-19 Investigation approaches for COVID-19 Contagious contemplation Cardiovascular manifestations of COVID-19 Potential long-term consequences Organization implications Summary and future directions for cardiovascular diseases of COVID-19 Analysis of electrocardiography Results and discussion Conclusion and future scope References An improved regularization and fitting-based segmentation method for echocardiographic images Introduction Materials and method Theory and calculation Energy minimization formulation and level set method of active contour models IRFS method Model for IRFS regularization Model for proposed fitting function Energy minimization Implementation Results Discussions Conclusions References Identification of heart failure from cine-MRI images using pattern-based features Introduction Pattern-based features Local binary pattern (LBP) Local ternary pattern (LTP) Difference of Gaussian LTP (DoGLTP) 3D local ternary cooccurrence pattern (3DLTCoP) System overview Dataset Classification Performance measures Results and discussion Conclusions References Medical image fusion methods: Review and application in cardiac diagnosis Introduction Medical image fusion process Classification of image fusion Sub-band decomposition Smooth partitioning Re-normalization Ridgelet analysis Cardiac image fusion Analysis of fused images Analysis of the quality of the fused image when reference image is available Analysis of the quality of the fused image when reference image is not available Results and analysis of fusion Visual analysis Statistical analysis Conclusions References Index