دسترسی نامحدود
برای کاربرانی که ثبت نام کرده اند
برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید
در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید
برای کاربرانی که ثبت نام کرده اند
درصورت عدم همخوانی توضیحات با کتاب
از ساعت 7 صبح تا 10 شب
ویرایش: نویسندگان: Prateek Singhal, Abhishek Verma, Prabhat Kumar Srivastava, Virender Ranga, Ram Kumar سری: ISBN (شابک) : 2022034487, 9781032213156 ناشر: CRC Press سال نشر: 2022 تعداد صفحات: 320 [321] زبان: English فرمت فایل : PDF (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود) حجم فایل: 30 Mb
در صورت تبدیل فایل کتاب Image Processing and Intelligent Computing Systems به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.
توجه داشته باشید کتاب پردازش تصویر و سیستم های محاسباتی هوشمند نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.
در حال حاضر رشد چشمگیری در داده های چند رسانه ای وجود دارد. در طول همهگیری کووید-19، مشاهده کردیم که تصاویر به پزشکان در تشخیص سریع عفونت کووید-19 در بیماران کمک زیادی کرد. بسیاری از برنامه های کاربردی حیاتی وجود دارد که تصاویر در آنها نقش حیاتی ایفا می کنند. این برنامهها از دادههای تصویر خام برای استخراج اطلاعات مفید در مورد دنیای اطرافمان استفاده میکنند. استخراج سریع اطلاعات ارزشمند از تصاویر خام یکی از چالشهایی است که دانشگاهیان و متخصصان در عصر حاضر با آن مواجه هستند. اینجاست که پردازش تصویر وارد عمل می شود. هدف اصلی پردازش تصویر بدست آوردن یک تصویر پیشرفته یا استخراج اطلاعات مفید از داده های تصویر خام است. بنابراین، نیاز اساسی به تکنیک یا سیستمی وجود دارد که این چالش را برطرف کند. سیستم های هوشمند به عنوان راه حلی برای پرداختن به استخراج سریع اطلاعات تصویر ظاهر شده اند. به عبارت ساده، یک سیستم هوشمند را می توان به عنوان یک مدل ریاضی تعریف کرد که خود را برای مقابله با پویایی یک مسئله وفق می دهد. این سیستم ها یاد می گیرند که چگونه عمل کنند تا یک تصویر بتواند به یک هدف برسد. یک سیستم هوشمند به انجام عملکردهای مختلف پردازش تصویر مانند بهبود، تقسیمبندی، بازسازی، تشخیص اشیا و شکلگیری کمک میکند. ظهور سیستم های هوشمند در زمینه پردازش تصویر، کاربردهای حیاتی بسیاری را برای نوع بشر به ارمغان آورده است. این کاربردهای حیاتی شامل اتوماسیون کارخانه، تجزیه و تحلیل تصویربرداری زیست پزشکی، اقتصاد سنجی تصمیم گیری و همچنین چالش های مرتبط است.
There is presently a drastic growth in multimedia data. During the Covid-19 pandemic, we observed that images helped doctors immensely in the rapid detection of Covid-19 infection in patients. There are many critical applications in which images play a vital role. These applications use raw image data to extract some useful information about the world around us. The quick extraction of valuable information from raw images is one challenge that academicians and professionals face in the present day. This is where image processing comes into action. Image processing’s primary purpose is to get an enhanced image or extract some useful information from raw image data. Therefore, there is a major need for some technique or system that addresses this challenge. Intelligent Systems have emerged as a solution to address quick image information extraction. In simple words, an Intelligent System can be defined as a mathematical model that adapts itself to deal with a problem’s dynamicity. These systems learn how to act so an image can reach an objective. An Intelligent System helps accomplish various image-processing functions like enhancement, segmentation, reconstruction, object detection, and morphing. The advent of Intelligent Systems in the image-processing field has leveraged many critical applications for humankind. These critical applications include factory automation, biomedical imaging analysis, decision econometrics, as well as related challenges.
Cover Half Title Title Page Copyright Page Table of Contents Editors Contributors Acknowledgement Chapter 1: Digital Image Processing: Theory and Applications 1.1 An Introduction to Image Processing 1.2 Key Concepts of Image Processing 1.2.1 What is Digital Image Processing? 1.2.2 Image Matrix Representation 1.2.3 Pixel 1.2.4 Pixel Neighborhoods 1.2.5 How Pixels Are Processed 1.2.6 Image Types 1.3 Fundamental Steps in Digital Image Processing 1.4 Applications of Image Processing 1.4.1 Noise 1.4.2 Scrambling 1.4.3 Forgery 1.4.4 Medical 1.5 Conclusions and Future Work References Chapter 2: Content-Based Image Retrieval Using Texture Features 2.1 Introduction 2.2 The State of the Art 2.3 Texture Features for CBIR 2.4 The Proposed Method 2.5 Experiment and Results 2.6 Performance Evaluation 2.7 Retrieval Results 2.8 Performance Comparison 2.9 Conclusion References Chapter 3: Use of Computer Vision Techniques in Healthcare Using MRI Images 3.1 Introduction 3.1.1 Difficulties and Opportunities 3.1.2 Obstacles in the Realm of Medical Imaging 3.2 Analysis of Medical Images 3.2.1 Typical Applications of AI in Medical Imaging Include the Following 3.3 Computer In Healthcare, Computer Vision 3.3.1 CV and AI in Health Imaging 3.4 Applications of Computer Vision in Healthcare 3.5 Critical Achievement Factor 3.6 Discussion and Conclusions References Chapter 4: Hierarchical Clustering Fuzzy Features Subset Classifier with Ant Colony Optimization for Lung Image Classification 4.1 Introduction 4.2 Literature Review 4.3 System Design 4.4 Result and Discussion 4.5 Conclusion References Chapter 5: Health-Mentor: A Personalized Health Monitoring System Using the Internet of Things and Blockchain Technologies 5.1 Introduction 5.2 Related Works 5.3 IoT-based Health Monitoring 5.4 Machine Learning-based Health Data Classification 5.5 Blockchain-Based Health Data Transfer and Storage 5.6 Summary of Existing Techniques 5.7 Research Gap in the Existing Technique 5.8 Objective of the Proposed Work 5.8.1 Proposed Health-Mentor System 5.9 IoT Data Collection 5.10 Normal and Abnormal Data Classification 5.11 Block Generation and Transfer 5.12 Block Analysis and Recommendation System 5.13 Experimental Results 5.14 Machine Learning Algorithm-Based Normal and Abnormal Data Classification 5.15 Block Construction and Transfer Analysis 5.16 Block Analysis and Recommender System Analysis 5.17 Conclusion and Future Work References Chapter 6: Image Analysis Using Artificial Intelligence in Chemical Engineering Processes: Current Trends and Future Directions 6.1 Introduction 6.2 Artificial Intelligence in Practice 6.2.1 The Impact on Academic Research 6.2.2 Impact in Industrial Practice 6.3 AI Principles 6.3.1 Data-Driven Approach 6.3.2 Knowledge-Based Approach 6.4 Image Analysis Using AI 6.4.1 Image Analysis in Process Systems Engineering 6.4.2 Image Analysis in the Petroleum Industry 6.4.2.1 Machine Learning in Upstream 6.4.3 Image Analysis in Wastewater Treatment 6.5 Real-Time Quality Monitoring System 6.6 Catalyst Design Using Image Processing 6.7 AI in Fault Detection and Diagnosis 6.8 Goals and Scopes of Image Analysis Using AI in Practice 6.9 Challenges of Image Analysis in Industry 6.10 Recent Trends and Future Outlook 6.11 Conclusion References Chapter 7: Automatic Vehicle Number Plate Text Detection and Recognition Using MobileNet Architecture for a Single Shot Detection (SSD) Technique 7.1 Problem Statement 7.2 Objective of the Study 7.3 Introduction 7.4 Review of the Literature 7.5 Methodology 7.6 Data Collection 7.7 Automatic Number Plate Detection Process 7.8 Installing and Setup Python Libraries 7.9 Download TF Model Pretrained Model Form TensorFlow Model Zoo and Install TFOD 7.10 Getting Number Plates Data 7.11 Training the Object Detection Model 7.12 Detecting Plates from an Image 7.13 Real-time Detection Using WebCam 7.14 Applying OCR 7.15 Results After Detection Process 7.16 Results and Discussions 7.17 Comparative Analysis 7.18 Conclusion 7.19 Future Work References Chapter 8: Medical Image Compression Using a Radial Basic Function Neural Network: Towards Aiding the Teleradiology for Medical Data Storage and Transfer 8.1 Introduction 8.2 Methodology 8.2.1 Data Acquisition 8.2.2 Medical Image Compression/Decompression Using Neural Network Algorithms 8.3 Results and Discussion 8.4 Conclusion References Chapter 9: Prospects of Wearable Inertial Sensors for Assessing Performance of Athletes Using Machine Learning Algorithms 9.1 Introduction 9.2 The State of the Art in Motion Sensing 9.2.1 3-D Motion Capture System 9.2.2 Wearable IMU Sensors 9.2.3 Electrogoniometers 9.2.4 Force Plate Mechanism 9.2.5 Medical Imaging Techniques 9.3 Wearable Inertial Sensors for Sports Biomechanics 9.4 Machine Learning (ML) Algorithm for Precision Measurement 9.4.1 Kalman Filter 9.4.2 Extended Kalman Filter 9.4.3 Extended Kalman Filter Algorithm 9.4.4 Zero-Velocity (ZUPT) Update 9.4.5 Cascaded Kalman Filter 9.4.6 Quaternion Concept 9.5 Conclusion References Chapter 10: Long Short-Term Memory Neural Network, Bottleneck Distance, and Their Combination for Topological Facial Expression Recognition 10.1 Introduction 10.2 Some Mathematical Background 10.2.1 A Brief Introduction to Homology Theory 10.2.2 Barcodes and Persistence Diagrams 10.2.3 Distance Functions 10.3 A Methodology for Facial Expression Recognition 10.3.1 Global View of the Proposed Design 10.3.2 Barcode Extraction for Facial Expressions 10.3.3 Facial Expression Classification 10.3.4 Classification Based on the Bottleneck Distance 10.3.5 Classification Based on LSTM 10.3.6 Classification Based on a Combination of Bottleneck and LSTM 10.4 Experiments and Results 10.4.1 Data Collection 10.4.2 Evaluation Standards 10.4.3 Classification Results 10.4.3.1 Classification Based on Bottleneck Distance 10.4.3.2 Classification Based on LSTM Recurrent Neural Network 10.4.3.3 Classification Using a Combination of Bottleneck and LSTM Classifiers 10.5 Conclusion and Future Work Acknowledgments References Chapter 11: A Comprehensive Assessment of Recent Advances in Cervical Cancer Detection for Automated Screening 11.1 Introduction 11.1.1 Cervical Cancer Monitoring and Detection Methods 11.2 Manual Screening Procedure 11.2.1 Cervical Cancer Screening and Diagnosis Procedures 11.3 Applications of Artificial Intelligence in Cervical Cancer Early Screening 11.3.1 Testing and Detection of HPV 11.3.2 Cervical Cytology Examination 11.3.2.1 Cervical Cell Segmentation 11.3.2.2 Cervical Cell Classification 11.3.2.3 AI Enhances Cervical Intraepithelial Lesion Screening Accuracy 11.4 Applications of Artificial Intelligence in Cervical Cancer Diagnosis 11.4.1 Colposcopy 11.4.1.1 Artificial Intelligence Improves Image Classification 11.4.1.2 Artificial Intelligence Aids in the Detection of High-Grade Cervical Lesions and Biopsy Guidance 11.4.2 MRI of the Pelvis 11.4.2.1 Cervical Cancer Lesions Segmentation 11.4.2.2 Cervical Cancer Diagnosis LNM 11.5 Future Directions and Limitations References Chapter 12: A Comparative Performance Study of Feature Selection Techniques for the Detection of Parkinson’s Disease from Speech 12.1 Introduction 12.2 Proposed Methodology 12.3 PD Features 12.4 Feature Selection 12.5 Fisher Score 12.6 mRMR (minimum Redundancy Maximum Relevance) 12.7 Chi-Square 12.8 Classification 12.9 Assessment of Feature Selection Methods 12.10 Results and Interpretation 12.11 Conclusion and Perspectives References Chapter 13: Enhancing Leaf Disease Identification with GAN for a Limited Training Dataset 13.1 Introduction 13.2 Materials and Methods 13.2.1 Dataset 13.2.2 Method 13.2.2.1 DCGAN 13.2.2.2 StyleGAN 2 13.2.2.3 The Fine-Tuning of CNN for Classification 13.3 Experimental Setup 13.3.1 GAN Training 13.3.2 Generating Images 13.3.3 Results and Discussions 13.4 Conclusion Acknowledgments References Chapter 14: A Vision-Based Segmentation Technique Using HSV and YCbCr Color Model 14.1 Introduction 14.2 Existing State-of-the-Art Gesture Recognition Systems 14.3 Proposed System Overview 14.4 Results 14.5 Conclusion References Chapter 15: Medical Anomaly Detection Using Human Action Recognition 15.1 Introduction 15.2 Related Work 15.2.1 Keypoint Detection 15.2.2 Anomaly Detection 15.3 Technical Approach 15.3.1 Key Points Detection 15.3.2 Action Classification 15.3.3 Working of the Model 15.3.4 Optimizers and Training Process 15.4 Dataset and Experimentation 15.5 Conclusion References Chapter 16: Architecture, Current Challenges, and Research Direction in Designing Optimized, IoT-Based Intelligent Healthcare Systems 16.1 Introduction 16.1.1 IoT Integrated with a Cloud Computing-Based Healthcare System Basically Processes in Four Steps as Follows 16.2 Pros and Cons of IoT in Healthcare Intelligent System 16.2.1 Advantages of a Cloud IoT-based Healthcare System 16.2.2 Limitations of an IoT-based Intelligent Healthcare System 16.3 Applications of IoT in Intelligent Healthcare Systems 16.4 Current Challenges and Research Direction of IoT in an Intelligent Healthcare System 16.4.1 Current Challenges and the Research Direction of IoT in an Intelligent Healthcare System 16.4.2 The Research Background of IoT in an Intelligent Healthcare System 16.4.3 Hardware and Software Startups that provide High-End Solutions for Current Healthcare Problems 16.5 Conclusion References Chapter 17: Wireless Body Area Networks (WBANs) – Design Issues and Security Challenges 17.1 Wireless Body Area Network Introduction 17.2 WBAN Architecture 17.3 WBAN Security and Privacy Requirements 17.4 Security Threats in Wireless Body Area Networks 17.4.1 WBAN Current Measures for Data Security Which Are Important and Not to Be Ignored 17.5 Future Implementation for an Efficient Wireless Body Area Network 17.5.1 Types of Attacks 17.6 Conclusion References Chapter 18: Cloud of Things: A Survey on Critical Research Issues 18.1 Introduction 18.1.1 Delivery of Cloud services 18.2 Integration Benefits of Cloud-IoT 18.2.1 Benefits 18.2.2 Applications of Cloud-IoT 18.3 Research Issues 18.4 Security Issues in Cloud-IoT 18.5 Conclusion Acknowledgement References Chapter 19: Evaluating Outdoor Environmental Impacts for Image Understanding and Preparation 19.1 Introduction 19.2 Related Works 19.2.1 Applications that Do Not Consider the Impact of Rain, Shadow, Darkness, and Fog 19.2.2 Other Applications 19.3 Our Approach for Image Data Understanding and Preparation 19.3.1 Image Data Understanding 19.3.1.1 Image Data Gathering 19.3.1.2 Verifying Image Data Quality 19.3.2 Assessing the Consistency among the Quality Values of the Images Captured Under a Particular Environmental Impact 19.3.3 Mapping Environmental Impact into JPEG Image Quality and Gaussian Noise Level 19.3.4 Applying Consistency and JPEG Image Quality and Gaussian Noise Level for Image Data Preparation 19.4 Experimental Method 19.4.1 Datasets 19.5 Results and Discussions 19.5.1 Analysis of Image Quality 19.5.2 Evaluating the Consistency Among the Quality Values for a Particular Impact Level 19.5.3 Assessing the Impacts in Terms of JPEG Image Quality and Gaussian Noise Levels 19.5.3.1 Mapping the Impact for PSNR 19.5.3.2 Mapping the Impact for ORB 19.5.3.3 Mapping the Impact for SSIM 19.6 Conclusions References Chapter 20: Telemedicine: A New Opportunity for Transforming and Improving Rural India’s Healthcare 20.1 Introduction 20.2 Rural Healthcare 20.3 Benefits of Telemedicine to Patients 20.4 ISRO’S Move with Telemedicine 20.5 Development Challenge 20.5.1 Awareness Building 20.5.2 Acceptance 20.5.3 Availability 20.5.4 Affordability 20.6 Conclusion References