دسترسی نامحدود
برای کاربرانی که ثبت نام کرده اند
برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید
در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید
برای کاربرانی که ثبت نام کرده اند
درصورت عدم همخوانی توضیحات با کتاب
از ساعت 7 صبح تا 10 شب
ویرایش: [1st ed. 2022]
نویسندگان: Sanjay Misra (editor). Chamundeswari Arumugam (editor)
سری:
ISBN (شابک) : 3030934527, 9783030934521
ناشر: Springer
سال نشر: 2022
تعداد صفحات: 387
[378]
زبان: English
فرمت فایل : PDF (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود)
حجم فایل: 8 Mb
در صورت تبدیل فایل کتاب Illumination of Artificial Intelligence in Cybersecurity and Forensics (Lecture Notes on Data Engineering and Communications Technologies, 109) به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.
توجه داشته باشید کتاب روشنایی هوش مصنوعی در امنیت سایبری و پزشکی قانونی (یادداشت های سخنرانی در مورد مهندسی داده و فناوری های ارتباطات، 109) نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.
This book covers a variety of topics that span from industry to academics: hybrid AI model for IDS in IoT, intelligent authentication framework for IoMT mobile devices for extracting bioelectrical signals, security audit in terms of vulnerability analysis to protect the electronic medical records in healthcare system using AI, classification using CNN a multi-face recognition attendance system with anti-spoofing capability, challenges in face morphing attack detection, a dimensionality reduction and feature-level fusion technique for morphing attack detection (MAD) systems, findings and discussion on AI-assisted forensics, challenges and open issues in the application of AI in forensics, a terrorist computational model that uses Baum–Welch optimization to improve the intelligence and predictive accuracy of the activities of criminal elements, a novel method for detecting security violations in IDSs, graphical-based city block distance algorithm method for E-payment systems, image encryption, and AI methods in ransomware mitigation and detection. It assists the reader in exploring new research areas, wherein AI can be applied to offer solutions through the contribution from researchers and academia.
Preface Contents About the Editors A Practical Experience Applying Security Audit Techniques in An Industrial Healthcare System 1 Introduction 2 Background 3 Security Audit Framework 3.1 Standardized Frameworks 3.2 Artificial Intelligence in This Project 4 Execution of the Security Audit 4.1 Scope 4.2 Vulnerability Analysis 4.3 Vulnerability Exploitation 4.4 Static Analysis 4.5 Executive Report 5 Conclusions and Future Work References Feature Extraction and Artificial Intelligence-Based Intrusion Detection Model for a Secure Internet of Things Networks 1 Introduction 2 The Security Issues Within IoT-Based Environments 2.1 The Following Are Some Examples of Malicious Threats 3 Applications of Artificial Intelligence for Security and Privacy in Internet of Things Systems 4 Methods and Materials 4.1 Particle Swarm Optimization (PSO) Model for Feature Extraction 4.2 The Convolutional Neural Network Algorithm 4.3 The CIC-IDS2017 Dataset Characteristics 4.4 Performance Analysis 5 Results and Discussion 6 Conclusion References Intrusion Detection Using Anomaly Detection Algorithm and Snort 1 Introduction 2 Background and Literature Review 2.1 Computer Attacks 2.2 Need for Intrusion Detection Systems 2.3 Types of Intrusion Detection Systems. 3 Methodology 3.1 Data Collection and Analysis 3.2 Snort 3.3 Anomaly Detection in IDS 3.4 Dataset 3.5 Monitoring and Data Collation 4 Presentation and Discussion of Results 4.1 Implementation 5 Conclusion and Future Work References Research Perspective on Digital Forensic Tools and Investigation Process 1 Introduction 2 Literature Review 3 Phases of Digital Forensic Investigation 3.1 Identification Phase 3.2 Preparation Phase 3.3 Analysis Phase 3.4 Documentation Phase 3.5 Presentation Phase 4 Digital Forensic Tools 4.1 Desktop Forensic Tool 4.2 Network Forensic Tool 4.3 AI Application in Digital Forensic 4.4 Live Forensic Tools 4.5 Operation System Forensic Tools 4.6 Email Forensic Tool 5 Challenges and Future Direction of Research in Digital Forensic 5.1 Challenges 5.2 Future Direction of Research 6 Conclusion References Intelligent Authentication Framework for Internet of Medical Things (IoMT) 1 Introduction 2 Intelligent Framework 2.1 Data Collection Modules 2.2 Biometric Data 2.3 Pre-processing 3 Feature Extraction 3.1 Feature Characteristics 3.2 Feature Extracted 4 Evaluation Experimentation 4.1 Features Evaluation 4.2 Signal Classification 4.3 Algorithm Performance 5 Artificial Intelligent Decision (AIDE) Module 5.1 Context Awareness Data 5.2 Artificial Intelligent Authentication 5.3 The Framework Evaluation 6 Conclusion References Parallel Faces Recognition Attendance System with Anti-Spoofing Using Convolutional Neural Network 1 Introduction 2 Related Works 3 Attendance System Using CNN 3.1 Preprocessing Phase 3.2 Face Detection Phase 3.3 Anti-Spoofing Phase 3.4 Decision Phase 3.5 Proposed Detection Flowchart/Algorithm 4 Results and Discussion 4.1 Evaluation Metrics 4.2 Datasets 4.3 Performance Evaluation 5 Conclusion and Future Works References A Systematic Literature Review on Face Morphing Attack Detection (MAD) 1 Introduction 2 Previous Related Surveys 3 Review Method 3.1 Review Design 3.2 Review Conduction 4 Results and Discussion 4.1 Result 4.2 Discussion 5 Parametric Discussion 6 Taxonomy of MAD Techniques 7 Open Issues and Future Directions 8 Conclusion Appendix A Primary Study in Review References Averaging Dimensionality Reduction and Feature Level Fusion for Post-Processed Morphed Face Image Attack Detection 1 Introduction 2 Related Works 3 Methodology 3.1 Data Collection 3.2 Image Sharpening 3.3 Face Pre-processing 3.4 Feature Extraction 3.5 Feature Normalization 3.6 Averaging Dimensionality Reduction and Feature Fusion 3.7 Image Classification 3.8 Performance Metrics 4 Results and Discussion 5 Conclusion 6 Future Works References A Systematic Literature Review on Forensics in Cloud, IoT, AI & Blockchain 1 Introduction 2 Background 3 Prior Research 4 Problem Definition 4.1 Aim 4.2 Limitations 5 Systematic Literature Review Process 5.1 Review Planning 6 Findings 7 Results and Discussion 7.1 Results 7.2 Discussion 7.3 How Forensics is Practiced in the Inter-Related, Interdependent Cloud Computing, IoT and Blockchain (ClIoTB) Environment? 7.4 How Artificial Intelligence Improves the Forensic Methodologies in Digital Forensics and in ClIoTB Environment? 8 Challenges and Open Issues 8.1 Cloud Forensics 8.2 IoT Forensics 8.3 Blockchain Forensics 8.4 AI Forensics 9 Conclusion References Predictive Forensic Based—Characterization of Hidden Elements in Criminal Networks Using Baum-Welch Optimization Technique 1 Introduction 2 Literature Review 3 Methodology 3.1 Data Collection Technique 3.2 Characterization of Hidden States 4 System Model 4.1 Hidden Markov Model for Criminal States Characterization 4.2 Terrorist (Network) States 4.3 Transition Probabilités Matrix 4.4 Initial Probabilities Matrix 4.5 Emission Symbols 4.6 Emission (Observation) Probabilities Matrix 5 Forensic Predictive Algorithmic Implementation 5.1 HMM for Criminal AICs and Attacks 6 Results and Findings 7 Conclusion and Future Directions References An Integrated IDS Using ICA-Based Feature Selection and SVM Classification Method 1 Introduction 2 Literature Review 3 Material and Method 3.1 Dataset 3.2 ML-Based Classifier 4 Investigational Evaluation 4.1 Investigational Findings and Discussion 5 Conclusion and Future Work References A Binary Firefly Algorithm Based Feature Selection Method on High Dimensional Intrusion Detection Data 1 Introduction 2 Related Work 3 Methodology 3.1 Features Selection 3.2 Firefly Algorithm 3.3 Binary Firefly Algorithm 3.4 Random Forest 4 Results and Discussion 4.1 Description of the Dataset 4.2 Performance Classification of the Proposed BFFA-RF 4.3 Comparison with the State-of-the-Art 5 Conclusion and Future Work References Graphical Based Authentication Method Combined with City Block Distance for Electronic Payment System 1 Introduction 2 Background and Literature Review 2.1 Types of Attacks on Passwords 2.2 Graphical Password Authentication Schemes (GPAS) 2.3 Categories of Graphical Password Authentication Techniques 2.4 Performance Metrics 2.5 Related Works 3 Methodology 3.1 Research Design Framework 3.2 The Equation for the E-Payment Authentication 3.3 Proposed Graphical Based Authentication Method Combined with City Block Distance 3.4 The Requirements for the Authentication Method 3.5 Performance Evaluation 3.6 Implementation 3.7 Similarity Measure 4 Experimental Results 4.1 Login Success Rate 4.2 Execution Time 4.3 Matching Errors for the Distance Measures 4.4 Analysis of Results 5 Conclusion and Future Work References Authenticated Encryption to Prevent Cyber-Attacks in Images 1 Introduction 2 Key Generation 2.1 Nonlinear Convolution Using Logistic Map 2.2 Round Key Generation 3 Encryption and Decryption 3.1 Deep Convolutional Generative Adversarial Network Based Test for Special Images 3.2 Permutations, Merging and Diffusion 3.3 Authentication 3.4 Decryption 4 Performance Analyses 4.1 Entropy 4.2 Histogram 4.3 Keyspace Analysis 4.4 UACI and NPCR Analysis 4.5 Known and Chosen Plain Text Attack 4.6 Correlation 4.7 Key Sensitivity Analysis 4.8 Occlusion Attack Analysis 4.9 Noise Attack Analysis 5 Conclusions and Future Work References Machine Learning in Automated Detection of Ransomware: Scope, Benefits and Challenges 1 Introduction 2 Background Study 3 Methodology 3.1 Sources of Research Data 3.2 Search Key Phrase 3.3 Search Criteria 3.4 Data Collection 3.5 Selection of Relevant Research Works 4 Results and Discussion 4.1 Ransomware Detection Models 4.2 Machine Learning Based Detection Models 4.3 Architecture of ML Based Ransomware Detection 4.4 Performance Metrics for ML Based Ransomware Detection Models 4.5 Datasets for Ransomware Detection Models 5 Limitations of Machine Learning Based Tools 6 Conclusion and Future Scope References