ورود به حساب

نام کاربری گذرواژه

گذرواژه را فراموش کردید؟ کلیک کنید

حساب کاربری ندارید؟ ساخت حساب

ساخت حساب کاربری

نام نام کاربری ایمیل شماره موبایل گذرواژه

برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید


09117307688
09117179751

در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید

دسترسی نامحدود

برای کاربرانی که ثبت نام کرده اند

ضمانت بازگشت وجه

درصورت عدم همخوانی توضیحات با کتاب

پشتیبانی

از ساعت 7 صبح تا 10 شب

دانلود کتاب IIT-JEE Super Course in Physics - Vol 3 Waves and Thermodynamics

دانلود کتاب IIT-JEE Super Course in Physics - جلد 3 امواج و ترمودینامیک

IIT-JEE Super Course in Physics - Vol 3 Waves and Thermodynamics

مشخصات کتاب

IIT-JEE Super Course in Physics - Vol 3 Waves and Thermodynamics

ویرایش:  
نویسندگان:   
سری:  
ISBN (شابک) : 9788131759769, 9789332506794 
ناشر: Pearson Education 
سال نشر: 2012 
تعداد صفحات: [323] 
زبان: English 
فرمت فایل : PDF (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود) 
حجم فایل: 16 Mb 

قیمت کتاب (تومان) : 41,000



ثبت امتیاز به این کتاب

میانگین امتیاز به این کتاب :
       تعداد امتیاز دهندگان : 9


در صورت تبدیل فایل کتاب IIT-JEE Super Course in Physics - Vol 3 Waves and Thermodynamics به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.

توجه داشته باشید کتاب IIT-JEE Super Course in Physics - جلد 3 امواج و ترمودینامیک نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.


توضیحاتی درمورد کتاب به خارجی



فهرست مطالب

Cover
Contents
Preface
Chapter 1: Properties of Matter
	Study Material
		Elasticity
			Stress
			Strain
			Elastic Limit
			Hooke’s Law
			Young’s Modulus
				Determination of Young’s Modulus
			Stress-Strain Diagram
			Rigidity Modulus
			Poisson’s Ratio
			Bulk Modulus
			Energy of a Strained Material
			Summary
		Hydrostatics
			Fluids
				Density of a Fluid
				Pressure in a Fluid
				Pressure Due to a Fluid Column
			Atmospheric Pressure
			Pascal’s Law
			Buoyancy and Archimedes’s Principle
			Flotation
			Equilibrium of a Floating Body
		Hydrodynamics
			Viscosity
			Stoke’s Law
			Terminal Velocity
			Streamline Flow
			Reynold’s Number
			Poiseuille’s Formula
			Equation of Continuity
			Energy of a Liquid in Streamline Flow
				(I) Kinetic Energy
				(II) Potential Energy
				(III) Pressure Energy
			Bernoulli’s Theorem
				Proof
			Alternative Statement of Bernoulli’s Theorem
			Application of Bernoulli’s Theorem
				(I) Torricelli’s Theorem of Efflux of a Liquid
				(II) Venturimeter
		Surface Tension
			Surface Energy
			Surface Tension
				Surface Tension is Numerically Equal to the Surface Energy Density
			Liquid Drops and Bubbles
			Angle of Contact
			Shape of Meniscus in a Capillary
			Capillary Rise
			Liquid Drop on a Solid Surface
		Summary
		Concept connectors
		Topic Grip
			Subjective Questions
			Straight Objective Type Questions
			Assertion–Reason Type Questions
			Linked Comprehension Type Questions
			Multiple Correct Objective Type Questions
			Matrix-Match Type Question
		IIT Assignment Exercise
			Straight Objective Type Questions
			Assertion–Reason Type Questions
			Linked Comprehension Type Questions
			Multiple Correct Objective Type Questions
			Matrix-Match Type Question
		Additional Practice Exercise
			Subjective Questions
			Straight Objective Type Questions
			Assertion–Reason Type Questions
			Linked Comprehension Type Questions
			Multiple Correct Objective Type Questions
			Matrix-Match Type Question
		Solutions
			Answer Keys
			Hints and Explanations
Chapter 2: Heat and Thermodynamics
	Study Material
		Introduction
			Temperature and its Measurement
				Concept of Temperature
			Thermometry
			Temperature Scales
				Conversion between Various Temperature Scales
		Types of Thermometers
			Liquid Thermometers
			Gas Thermometers
			Resistance Thermometer
			Thermoelectric Thermometers
			Pyrometers (or Radiation Thermometers)
			Vapour Pressure Thermometer
			Magnetic Thermometer
		Thermal Expansion
			Expansion of Solids
				(I) Linear Expansion
				(II) Superficial Expansion (Expansion of Area)
				(III) Volume Expansion
				(IV) Relation Between α, B and Y
				(V) Variation of Density with Temperature
				(VI) Thermal Stress
				(VII) Effect of Linear Expansion on Pendulum Clocks
				(VIII) Error in Measurement by Metal Scales Due to Expansion or Contraction
				(IX) Bimetallic Strip
			Atomic Theory of Thermal Expansion in Solids
			Expansion of Liquids
				(I) Weight Thermometer
				(II) Anomalous Expansion of Water
			Expansion of Gases
			Boyle’s Law
			Charles’s Law
			Ideal Gas Equation
		Calorimetry
			Specific Heat (C)
			Molar Specific Heat (Cm)
			Dulong and Petit Law (Average Molar Specific Heat of Metals)
			Water Equivalent of a Body (W)
			Principle of Calorimetry
			Latent Heat
				(I) Latent Heat of Fusion (Lf )
				(II) Latent Heat of Vapourization (Lv )
		Specific Heat of Gases
			Molar Specific Heat at Constant Volume (Cv )
			Molar Specific Heat at Constant Pressure (Cp)
		Kinetic Theory of Gases
			Basic Assumptions of Kinetic Theory of Gases
			Velocity Distribution of Molecules
				RMS Speed (Vrms)
				Pressure Exerted by a Gas
				Average Speed (Vav)
				Most Probable Speed (Vmp)
				Mean Free Path
			Dalton’s Law of Partial Pressure
				Degrees of Freedom
				Law of Equipartition of Energy
				Relation between Degrees of Freedom and Specific Heats of a Gas
				For Monoatomic Gases
				For Diatomic Gas at 70 K < T < 500 K
				For Triatomic Gas (Linear)
		Thermodynamics
			Zeroth Law of Thermodynamics
				Internal Energy of a System
			Thermodynamic Process
			P-V Diagram or Indicator Diagram
			First Law of Thermodynamics
			Sign Conventions
			Some Thermodynamic Processes
				Isothermal Process
				Adiabatic Process
				Isochoric Process
				Isobaric Process
		For Advanced Reading
			Second Law of Thermodynamics
			Heat Engines
			Carnot Theorem
			Carnot Engine
			Refrigerator
		Transmission of Heat
			Conduction
			Convection
			Radiation
			Thermal Conductivity (K)
				Heat Transfer by Radiation
				Emissive Power(e)
				Absorptive Power(a)
			Kirchhoff’s Law
			Stefan’s Law
			Wien’s Displacement Law
			Newton’s Law of Cooling
		Summary
		Concept Connectors
		Topic Grip
			Subjective Questions
			Straight Objective Type Questions
			Assertion–Reason Type Questions
			Linked Comprehension Type Questions
			Multiple Correct Objective Type Questions
			Matrix-Match Type Question
		IIT Assignment Exercise
			Straight Objective Type Questions
			Assertion–Reason Type Questions
			Linked Comprehension Type Questions
			Multiple Correct Objective Type Questions
			Matrix-Match Type Question
		Additional Practice Exercise
			Subjective Questions
			Straight Objective Type Questions
			Assertion–Reason Type Questions
			Linked Comprehension Type Questions
			Multiple Correct Objective Type Questions
			Matrix-Match Type Questions
		Solutions
			Answer Keys
			Hints and Explanations
Chapter 3: Oscillations and Waves
	Study Material
		Periodic Motion
			Oscillatory Motion
		Simple Harmonic Motion (SHM)
			Differential Equation of a Simple Harmonic (Linear Harmonic) Motion
			Solution of the Differential Equation: Expression for the Displacement of SHM
			The Exact Solution of the Differential Equation
			Displacement Amplitude
			Phase
				Phase at the Mean Position (or Equilibrium Position O)
				Phase at the Extreme Positions
				Time Period of SHM (T)
				Frequency of SHM
				Angular Frequency of SHM
				Different Forms of Equation for SHM
				Graphical Representation of SHM
				Relation between Displacement X and Acceleration a
				Relation between Displacement X and Velocity V in SHM
				Relation between Velocity V and Acceleration a in SHM
				Simple Harmonic Motion and Uniform Circular Motion
				Energy of a Simple Harmonic Oscillator
				Combinations of Simple Harmonic Motions
		Examples of Simple Harmonic Motion
			Angular Simple Harmonic Motion
			Simple Pendulum
				Time Period of a Simple Pendulum of Length L
				Energy of a Simple Pendulum
			Seconds Pendulum
			Spring-Mass Systems
				(a) Oscillations of Loaded Spring
				(b) Series Combination of Light Springs
				(c) Parallel Combination of Light Springs
				(d) Two Body Spring Systems
			The Physical Pendulum
			Torsional Pendulum
			Oscillations of a Liquid Column
				Vertical Oscillations of a Loaded Wire of Negligible Mass
		Damped Oscillations
		Forced Oscillations and Resonance
			Summary
		Wave Motion
			Classification of waves
				(a) Classification Based on Medium of Propagation
				(b) Classification of waves Based on Mode of Propagation
				(c) Classification of Mechanical waves Based on Vibration of Particles of the Medium
				(d) Classification of Mechanical waves Based on Transfer of Energy
			Periodic Waves
				Terminology of Progressive wave Motion
				Relation between Path Difference and Phase Difference
		General Equation of a One Dimensional Progressive Wave
			Equation of a Sinusoidal Progressive Wave
			Energy Density of a Wave (U)
			Power of a Wave (P)
			Intensity of a Wave (I)
		Principle of Superposition of Waves
			Interference
				The condition for interference maxima is
				The condition for interference minima is
		Reflection and Transmission of Waves
			Bounded Medium
			Stationary Waves
			Theory of Stationary Waves
				Antinodes
				Nodes
				Characteristics of Stationary Waves
				Differences between Progressive Waves and Stationary Waves
		Transverse Stationary Waves in a Stretched String
			Laws of Transverse Vibrations in Stretched Strings
				1. Law of Length
				2. Law of Tension
				3. Law of Mass
		Sound
			Classification of Sound
			Newton’s Formula for Speed of Sound in Solids and Liquids
			Speed of Sound in Gases
			Factors Affecting the Speed of Sound in Gases
				(a) Effect of Pressure
				(b) Effect of Temperature
				(c) Effect of Density of Gas
				(d) Effect of Humidity
				(e) Effect of Wind
				(f) Effect of Change in Frequency or Wavelength of Sound Wave
				(g) Effect of Amplitude
		Stationary Waves in Air Columns
			Modes of Vibration of Air in a Closed Pipe
				Modes of Vibration of Air in an Open Pipe
				End Correction
		Beats
			Graphical Explanation of Formation of Beats
				Theory of Beats
			Application of Beats
				(I) Determination of Frequency
				(II) Tuning of Musical Instruments to a Particular Frequency
				Determination of Velocity of Sound
		Doppler Effect
			General Expression for Apparent Frequency
			Special Cases
				(1) Source of Sound Moving Towards a Stationary Listener.
				(2) Source of Sound Moving Away Form a Stationary Listener
				(3) Listener Moving Towards a Stationary Source
				(4) Listener Moving Away from a Stationary Source
				(5) Source and Listener Moving Towards Each Other
				(6) Source and Listener Moving Away from Each Other
				(7) Source Approaching the Listener and the Listener is Moving Away from Source
				(8) Apparent Frequency with Medium Moving
				Applications of Doppler Effect
		Longitudinal Mechanical Waves (Sound) as Pressure Waves
			Intensity of Sound
			Intensity Level
			Loudness of Sound
			Noise and Musical Sound
			Characteristics of Musical Sounds
			(a) Pitch
			(b) Loudness
			(c) Quality or Timbre
		Summary
		Concept Connectors
		Topic Grip
			Subjective Questions
			Straight Objective Type Questions
			Assertion–Reason Type Questions
			Linked Comprehension Type Questions
			Multiple Correct Objective Type Questions
			Matrix-Match Type Question
		IIT Assignment Exercise
			Straight Objective Type Questions
			Assertion–Reason Type Questions
			Linked Comprehension Type Questions
			Multiple Correct Objective Type Questions
			Matrix-Match Type Question
		Additional Practice Exercise
			Subjective Questions
			Straight Objective Type Questions
			Assertion–Reason Type Questions
			Linked Comprehension Type Questions
			Multiple Correct Objective Type Questions
			Matrix-Match Type Questions
		Solutions
			Answers Keys
			Hints and Explanations




نظرات کاربران