ورود به حساب

نام کاربری گذرواژه

گذرواژه را فراموش کردید؟ کلیک کنید

حساب کاربری ندارید؟ ساخت حساب

ساخت حساب کاربری

نام نام کاربری ایمیل شماره موبایل گذرواژه

برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید


09117307688
09117179751

در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید

دسترسی نامحدود

برای کاربرانی که ثبت نام کرده اند

ضمانت بازگشت وجه

درصورت عدم همخوانی توضیحات با کتاب

پشتیبانی

از ساعت 7 صبح تا 10 شب

دانلود کتاب Ignition Handbook: Principles and Applications to Fire Safety Engineering, Fire Investigation, Risk Management and Forensic Science

دانلود کتاب کتاب اشتعال: اصول و کاربردهای مهندسی ایمنی در برابر آتش ، بررسی آتش ، مدیریت ریسک و علوم پزشکی قانونی

Ignition Handbook: Principles and Applications to Fire Safety Engineering, Fire Investigation, Risk Management and Forensic Science

مشخصات کتاب

Ignition Handbook: Principles and Applications to Fire Safety Engineering, Fire Investigation, Risk Management and Forensic Science

ویرایش:  
نویسندگان:   
سری:  
ISBN (شابک) : 0972811133, 9780972811132 
ناشر:  
سال نشر:  
تعداد صفحات: 1128 
زبان: English 
فرمت فایل : PDF (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود) 
حجم فایل: 38 مگابایت 

قیمت کتاب (تومان) : 32,000

در صورت ایرانی بودن نویسنده امکان دانلود وجود ندارد و مبلغ عودت داده خواهد شد



ثبت امتیاز به این کتاب

میانگین امتیاز به این کتاب :
       تعداد امتیاز دهندگان : 11


در صورت تبدیل فایل کتاب Ignition Handbook: Principles and Applications to Fire Safety Engineering, Fire Investigation, Risk Management and Forensic Science به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.

توجه داشته باشید کتاب کتاب اشتعال: اصول و کاربردهای مهندسی ایمنی در برابر آتش ، بررسی آتش ، مدیریت ریسک و علوم پزشکی قانونی نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.


توضیحاتی در مورد کتاب کتاب اشتعال: اصول و کاربردهای مهندسی ایمنی در برابر آتش ، بررسی آتش ، مدیریت ریسک و علوم پزشکی قانونی

این مرجع سنگین، حوزه اشتعال (یا با استفاده از اصطلاح قدیمی تر، التهاب) آتش سوزی های ناخواسته را در بر می گیرد. تأکید بر جنبه‌های عملی تعیین علل آتش‌سوزی است، با زیربنای نظری به گونه‌ای خلاصه شده است که حتی برای پزشکان پیشرفته نیز کافی است. این کتاب مقدمه ای بر علم آتش نیست. فرض بر این است که خوانندگان پیشینه ای در علم/مهندسی آتش نشانی یا تحقیقات آتش سوزی دارند. مخاطبان گسترده هستند، از جمله تمرین‌کنندگانی که در بررسی آتش‌سوزی‌های گذشته و همچنین مهندسانی که به‌دنبال به حداقل رساندن پتانسیل اشتعال در ساختمان‌ها و تأسیساتی که طراحی می‌کنند، هستند. پس از پوشش اصطلاحات و اصول، فصل‌هایی که به خوبی ارجاع داده شده‌اند، احتراق گازها و بخارات، ابرهای گرد و غبار، مایعات، جامدات معمولی و عناصر، و همچنین خودگرم شدن، مواد منفجره و آتش‌زا، منابع اشتعال خارجی، و اقدامات پیشگیرانه را مورد بحث قرار می‌دهند. بخشی از صفحات رنگی متن را پشتیبانی می کند و دو فصل آخر شامل اطلاعاتی در مورد مواد و دستگاه های خاص و جداول مفید است. نویسنده یک شرکت مشاوره در این زمینه را رهبری می کند.


توضیحاتی درمورد کتاب به خارجی

This hefty reference encompasses the field of ignition (or, using an older term, inflammation) of unwanted fires. Emphasis is on the practical aspects of determining causes of fires, with the theoretical underpinnings summarized in a way that should suffice for even advanced practitioners. The book is not meant as an introduction to fire science; readers are presumed to have background in either fire sceince/engineering or in fire investigation. The audience is wide, including practitioners involved in investigating past fires as well as engineers seeking to minimize the potential for ignition in the buildings and facilities they design. After coverage of terminology and fundamentals, the well-referenced chapters discuss ignition of gases and vapors, dust clouds, liquids, common solids, and elements, as well as self-heating, explosives and pyrotechnics, external ignition sources, and preventive measures. A section of color plates supports the text, and the final two chapters include information on specific materials and devices, and useful tables. The author heads a consulting firm in the field.



فهرست مطالب

Title page
Foreword
Preface
About the author
Acknowledgements
Table of contents
Chapter 1. Introduction
	Background
	Fire ignition statistics
	The fire triangle and taxonomy of ignitions
		Some complications of definition
		Types of combustion and combustion-like reactions
	Apparatus-dependent nature of ignition
	The probabilistic nature of ignition and negative proof
	Comments to the fire investigator
	Computer methods
	References
Chapter 2. Terminology
	Terms used in this book
	Definitions
	Abbreviations and acronyms
	References
Chapter 3. Fundamentals of combustion
	Introduction
	Thermochemistry
		Heat of combustion
		Constant-volume heat of combustion
		Effective heat of combustion; heats of explosion and detonation
		Relations between fuel and air
		Adiabatic flame temperature
	Reaction kinetics
		Branching chain reactions
		Autocatalytic reactions
	Flame speed
	Types of explosions
		Pressure piling
		Deflagration to detonation transition
	Catalytic combustion
	Tests for fundamental combustion properties
	Further readings
	References
Chapter 4. Ignition of gases and vapors
	Highlights and summary of practical guidance
	Exothermic reactions in gases
		Slow oxidation
		Cool flames
		Multiple ignition temperatures
	Autoignition of premixed gases
		Theory
			Ignition of specific fuels
		Experimental determination of the AIT
		Variables affecting the AIT
			Molecular structure
			Fuel concentration
			Pressure
			Oxygen concentration
			Vessel size and operating conditions
			Wall material
			Flow velocity and turbulence
		Other relations
		AIT of mixtures
		Ignition time
			Effect of fuel type and mixture composition
			Effect of pressure
			Effect of flow rate
		Sub-ignition, two-stage, and multi-stage ignitions
		Ignition due to compression or shock
	Piloted ignition of premixed gases
		Ignition with the presence of excited species
			Spark ignition phenomema
			Theories for spark ignition, MIE, and quenching distance
			Ignition from breaking wires or moving contacts
			Pilot flame ignition
			Ignition by burning particles
		Variables affecting ignition of gases when piloted with the presence of excited species
			Chemical nature of the fuel
			Oxygen concentration
			Diluents
			Fuel concentration
			Temperature
			Pressure
			Gravity
			Test geometry
			Mixture velocity and turbulence
			Wall materials
			Circuit topology
			Spark duration
			Electrode arrangement
			Electrode materials
		Ignition in the absence of excited species and hot-wire ignitions of all types
			Hot surface ignition and catalytic effects
				Experimental studies
				Catalytic (surface) ignition
				Theories
			Fused wire ignition
			Ignition by hot, non-flaming gases and MESG
		Ignition by laser energy
			Direct thermal heating of gas
			Photochemical excitation of gas
			Laser-induced breakdown of gas
			Radiative heating of small particles in the atmosphere
			Laser-induced breakdown of gas aided by presence of small particles
	Flammability limits
		Theory
		Flammability limits in mass units
		Estimation of flammability limits
		Flammability limits for mixtures
		Variables affecting flammability limits
			Oxygen concentration
			Pressure
			Temperature
			Velocity
			Gravity
			Turbulence and sloshing
			Measuring apparatus
			Ignition source
			Additives
		Minimum oxygen concentration for flammability
	Unified theories of gas ignition
	Ignition of non-premixed gases
	Initiation of gaseous detonations
		Minimum energy for detonation
		Detonation limits
	Tests for ignition properties of gases
		Autoignition temperature
			Early methods
			Heated tube tests
			Tests primarily for liquids
			Other test methods
		Heated-surface ignition
		Flammability limits
			Bureau of Mines flammability tube
			ASTM E 681
			Proposed EN method
			ASTM E 918
			ASTM E 2079
			UL tests
			Research tests
		Minimum ignition energy
			ASTM E 582 test
		Quenching distance
		MESG
			IEC/PTB and HSE 20 mL spheres
			Westerberg apparatus (UL)
	Further readings
	References
Chapter 5. Ignition of dust clouds
	Highlights and summary of practical guidance
	General principles
	Chemistry of combustion
	Flammability limits
		Lower flammability limits
		Upper flammability limit
	AIT, quenching distance and MESG
	Theory of ignition of dust clouds
	Hybrid gas/dust-cloud ignitions
	Ignition sources for dust clouds
		Mechanical sparks
		Electric sparks
		Hot surfaces
		Glowing nests
		Others
	Clouds of powdered fibers (flock)
	Analysis and application of data
		Variables affecting the AIT
			Dust concentration
			Volatile content
			Particle diameter
			Moisture
			Oxygen concentration
			Residence time
			Turbulence
			Test apparatus volume
		Variables affecting the flammability limits
			Probability level used for the definition of the LFL
			Particle diameter
			Temperature
			Pressure
			Moisture
			Oxygen concentration
			Igniter energy supplied
		Variables affecting the MIE
			Dust concentration
			Particle diameter
			Temperature
			Pressure
			Moisture
			Oxygen concentration
			Turbulence
			Charge on particles
			Spark electrodes: material and gap size
			Spark circuit parameters
			Air velocity and turbulence
			Test vessel size
		Risk management based on the MIE
		Diluting with inert gases
		Diluting with inert dusts
	Tests for ignition properties of dust clouds
		ASTM E 1491
		ASTM E 2019
		Godbert-Greenwald furnace
		Bureau of Mines 1.2 L furnace
		BAM oven
		Hartmann apparatus
		Bureau of Mines 6.8 L chamber
		Spheres and other 20 L chambers
		Nordtest 15 L apparatus
		1 m3 spheres
		ASTM E 1232
		IEC 61241-2-3/Mike 3
		CMI mechanical impact test
	Further readings
	References
Chapter 6. Ignition of liquids
	Highlights and summary of practical guidance
	Accidental ignitions of liquids
	Properties of liquids
	Autoignition of liquids
		Ignition of single drops
		Liquid aerosols or sprays
	Flash point and fire point
		Flash point
		Upper flash point
		The fire point
		The pre-flash ‘halo’
		The distribution of fuel vapors above the surface
		Estimations of flash point
		Flash points of mixtures
			Ideal mixtures
			Non-ideal mixtures
			Mixtures with halogenated components
			Flash points of petroleum distillates
		Relation between flash point and MIE
	Piloted ignition of liquids
		Spark ignition of liquid aerosols or sprays
			Minimum ignition energy
			High flash-point liquids
			Limits of flammability for liquid aerosols
		MESG of liquid aerosols
		Hot surface ignition of droplets, sprays or spills
			Single droplets of a pure fuel
			Hot engine surfaces and related problems
		Pools
			Pools at or above their flash point
			Pools below their flash point
	Ignition of fuel in closed vessels
		Effect of vapor/liquid volume ratio
		Effect of slosh
	Radiant ignition of liquids
		Thick layers
		Thin layers
	Ignition of liquids by other means
	Tests for ignition properties of liquids
		Autoignition temperature
			Early test methods
			ASTM D 286
			ASTM D 2155
			ASTM E 659
			Other Bureau of Mines tests
		Flash point
			ASTM D 56
			ASTM D 92
			ASTM D 93
			ASTM D 1310
			ASTM D 3278
			ASTM D 3828
			ASTM D 3934
			ASTM D 3941
			Abel flash point test
		Tests for other properties
			ASTM D 4206 test for sustained burning
			Hydraulic fluid sprays
				ISO 15029
				Factory Mutual tests
				MSHA spray test
	Further readings
	References
Chapter 7. Ignition of common solids
	Highlights and summary of practical guidance
	Types of ignition
	General principles of flaming ignition
		Qualitative features
		The ignition problem for solids
	Research into ignition of solids
		Ignition temperature as ignition criterion
		Mass loss rate as ignition criterion
		HRR as an ignition criterion
		Other criteria for ignition
	Ignition from radiant heating
		Gas phase events
		Cool flames
		Comprehensive theories
			Atreya’s model
		Engineering treatments for thermally thick solids
			Development of approximate solutions
			Janssens’ procedure
				Non-constant heat flux—generalization of Janssens’ procedure
			Quintiere’s procedure
			Tewarson’s procedure
			Other data treatment procedures
			Relation between minimum and critical fluxes
		Engineering treatments for thermally thin solids
			Condition 1—back face insulated
			Condition 2—back face cooled
			Condition 3—back face also heated
			Other issues for thin slabs
		Illustrative data
		Composite materials
		Criteria for distinguishing thermally thick versus thin materials
		General and intermediate-thickness materials
		Energy needed for ignition
		Laser ignition
	Ignition from convective heating or immersion in a hot environment
		Ignition theories for convective heating
			Lumped-capacitance model
			Thermally-thick solid—constant heat flux
			Thermally-thick solid—constant convective transfer coefficient
			Thermally-thick solid—boundary layer solution
		Ignition theories for submersion in hot environments
	Theoretical solutions for other problem conditions
		Thermally-thick inert solid with fixed net heat flux
		Thermally-thick inert solid with fixed heat flux and convective cooling
		Thermally-thick reactive solid with fixed heat flux
		Finite-thickness inert plate with fixed heat flux
		Finite-thickness reactive plate
		Finite-thickness polymer undergoing charring
		Thermally-thick reactive solid held at a fixed face temperature indefinitely
		Thermally-thick reactive solid held at a fixed face temperature for a finite time
		Thermally-thick reactive solid receiving fixed radiant heat flux only
		Solid receiving a brief, high-intensity pulse of radiation
		Porous solids
		Diathermanous solids
		Miscellaneous geometries
		Depletion of reactants not ignored
	Ignition from localized sources
		Small flames
		Small-diameter, high-intensity heat sources
		Hot bodies
	Ignition from large flames
	Duration of ignited burning
		Flashing vs. sustained flaming
		Sustained flaming after initial ignition
	Variables affecting ignition of solids
		Type of pilot (or lack thereof)
		Orientation
		Exposed area size
		Air flow rate
		Oxygen concentration
			Piloted ignition
			Autoignition
		Chemical composition of diluents
		Total pressure
		Moisture and relative humidity
		Initial temperature of specimen
		Acceleration of gravity
		Surface absorptivity, material transparency, surface coatings, and spectral characteristics of the radiant source
		Polymer structure
		Porosity
		Fire retardants
		Movement of the surface
		Surface roughness
		Ignitability of aged, degraded, or charred materials
		Wetting by water
		Type of apparatus
		Mass of sample
		Long-term radiant exposures
	Arcing across a carbonized path
	Glowing ignition
	Smoldering ignition
		Theory
		Effect of layer thickness
		Effect of packing density or porosity
		Smolder promoters and smolder inhibitors
		Transition from smoldering to flaming ignition
		Indicators of smoldering
	Tests for ignition properties of solids
		Flame ignition tests
			ASTM D 2859 methenamine pill test
			CS 191-53 (16 CFR 1610) flammable fabrics test
			FF-3-71 (16 CFR 1615) and FF-5-74 (16 CFR 1616) children’s sleepwear tests
			CPSC 16 CFR 1500.44 flammable solids test
			NFPA 701 and NFPA 705 methods
			ASTM D 1692
			UL 94 test series
			UL end-product tests
			Small-flame tests for wire and cable
				ASTM D 2633
				UL 1581
				IEC tests
			MVSS 302
			FAR Bunsen  burner test
			ISO 11925-2 small flame test
			Large-flame tests
		Radiant ignition tests
			The Cone Calorimeter
			ISO 5657
			ASTM E 1321 (LIFT)
			FM Fire Propagation Apparatus—ASTM E 2058
			ASTM E 1623 (ICAL)
		Arc tracking and arc ignition tests
			ASTM D 495
			ASTM D 2303
			ASTM D 3032
			ASTM D 3638
			MIL-STD-2223
			UL tests
		Electric spark or arc ignition
			Bureau of mines electric spark method
			Nordtest NT Fire 016 method
			NIST electric arc method
		Smoldering
			Cellulose insulation
			Mattress tests
		Burning brand ignition
			ASTM E 108 roof test
		Other types of tests
			Convective heating tests
			Hot wire or bar ignition tests
			Hot rivet or nut tests
			Setchkin furnace, ASTM D 1929
			Limiting oxygen index (LOI), ASTM D 2863
			Thermal analysis tests
	Further readings
	References
Chapter 8. Ignition of elements
	Highlights and summary of practical guidance
	Ignition of metals
		General principles
		Theories
			Theories for a single, isolated mass
			Theories for metal dust layers
		Effect of oxygen concentration
		Effect of pressure
		Effect of flow velocity
		Effect of moisture
	Ignition of carbon
		Graphite and other relatively pure forms of carbon
		Coal, coke, and other relatively impure forms of carbon
			Single particles
			Dust clouds
	Test methods
	References
Chapter 9. Self-heating
	Highlights and summary of practical guidance
	Introduction
	Basic phenomena
	Theory of self-heating
		Steady-state theory for symmetrically cooled bodies
			Peak temperatures under subcritical conditions
			Bodies of other shapes
		Steady state theory for unsymmetrically cooled bodies
			Infinite slab
			Hollow infinite cylinder
		Steady-state theory including oxygen diffusion
		Steady-state theory including fuel depletion
		Correction for low activation energy
		More complex reactions
		Hot work, cold work, and hot spots
			Hot work
			Cold work
			Inert hot spots
			Reactive hot spots
			Applied heat flux
		Transient theory
			Estimating time to criticality
			Linearly increasing surface temperature
			More advanced models
	Applications
		Ignition from self-heating
		Effects of different variables on self-heating
			Chemical and physical nature of the substance
			Pile size and shape, and porosity of the substance
			Particle size
			Temperature
			Time of storage
			Access of air
			Oxygen concentration
			Insulation
			Multiple packing
			Moisture and rain
			Density
			Antioxidants
			Contaminants
			Multiple-component substances
		Ignition of dust layers
			Electrical heating problems
		Hot spots
		Self-heating in liquids
		Liquid-soaked porous solids
		Detonation or deflagration upon self-heating
		Preventive measures
	Tests for self-heating or reactivity
		Real-scale tests
			UN Test H1—The US SADT test
		Geometric-scaling tests
			Scaling according to Frank-Kamenetskii theory
				Oven-basket tests: FRS method
					Simple form of analysis
					FRS method of analysis
					Treatment for initially-hot substances
					Treatment for substances varying in density
					Variations in loading
					Estimating the Biot number
					Estimating the thermal conductivity
					Worked examples
					Limitations and validation of small-scale test procedures
				Oven-basket tests: crossing point methods
				Oven-basket tests: Nordtest method
				Oven-basket tests: IMO test
				Oven-basket tests: UN Test N4
				Hotplate tests
					ASTM E 2021 test
			Scaling according to Semenov theory
				General Dewar flask testing
				UN Test H2—Adiabatic storage test
				UN Test H4—Heat accumulation storage test
		Calorimeter tests
			Adiabatic calorimeters
			Isothermal calorimeters
			ARC and APTAC tests
			Other industrial reaction calorimeters
		Thermal analysis methods
			DTA, DSC, and related techniques
			Simple screening test based on DSC
			Quantitative ASTM procedures
				ASTM E 698
				ASTM E 793
				ASTM E 1641
				ASTM E 1231
			Qualitative ASTM procedures
			UN Test H3—Isothermal storage test
		Empirical or qualitative tests
			Mackey test and related tests
				Ordway test
				Mackey test
				ASTM E 771 test
			ASTM E 476
			UN Test O1 for oxidizing solids
			UN Test O2 for oxidizing liquids
			UN Test S1—Trough test for fertilizers containing nitrates
		Bureau of Mines dust layer ignition temperature test
		Oxygen consumption calorimetry
	Further readings
	References
Chapter 10. Explosives, pyrotechnics, reactives
	Highlights and summary of practical guidance
	Unstable substances
		Heat of formation
		Heat of decomposition
		Self-heating of liquids
			Theory
			Experimental studies
		Self-heating of solids
	Runaway exothermic reactions
	Reactive substances
	Explosives
		Types of explosives
		Chemistry of explosives
			Oxygen balance
		Initiation and ignition
			Self-heating, stability in storage, and exposure to heat
			Impact and shock
				Theories of impact and shock initiation
			Flames
			Radiant heating
			Hot bodies in contact
			Friction
			Compression
			Electricity
			Light energy and ionizing radiation
			Crystal growth
			RF initiation
		Modeling detonation
		Ignition of air/fuel-gas atmospheres by condensed-phase explosives
		Variables affecting the behavior of explosives
		Practical applications
			Initiating devices
			Permissible explosives
			Blasting agents
			Insensitive munitions
			Safe distances for storage
	Propellants
		Ignition theory and experimental data
	Pyrotechnics
		Chemistry of pyrotechnic reactions
		Practical applications
	Test methods
		UN tests
			Drop-hammer tests
			Koenen/BAM friction sensitivity test
			Card-gap test
			Readily combustible solids
			Pyrophoric solids
			Pyrophoric liquids
			Water-reactive solids or liquids
			Oxidizing solids
			Oxidizing liquids
		US military standard tests
			Vacuum stability and chemical decomposition tests
			Laboratory scale impact test
			Electrostatic sensitivity test
			Adiabatic sensitivity test
			Cookoff tests
			Shock initiation sensitivity test
			Henkin test for explosion temperature
			Sensitivity to initiation
		Permissible explosives
		Other tests
			Pendulum friction test for glancing blows
			NOL thermal sensitivity test
			Bureau of Mines test for oxidizing solids
			LLNL Steven test
	Further readings
	References
Chapter 11. Ignition sources
	Highlights and summary of practical guidance
	Introduction
	High ambient temperatures
	Hot solids or liquids
		Large hot surfaces in contact—Theory
		Small hot objects—Theory
		Airborne burning objects (flying brands)
			Ignition of buildings
			Ignition of wildland fires
			Prediction of spotting distances
		Exhaust particles
		Welding spatter
		Brands ejected from fireplace
		Friction and mechanical sparks
			General principles
			Ignition of flammable gas atmospheres
			Ignition of dust clouds and layers of  porous materials
	Shock, impact, pressure, vibration
		Shock and impact
			Dropped objects
			High-velocity impacting particles (unheated)
		Pressure (compression ignition)
		Vibration
	Flames or remote objects
		Small burner flames and small burning objects
		Larger flaming sources and burners
			Kitchen sources
			Large laboratory burners
		Jets and high velocity burners
		Solid-fuel ignition sources
		Burning fabrics
		Burning furniture
		Large burning objects
			Liquid pools , wood cribs
			Fireballs and jet flames
			Burning buildings
				Heat fluxes to the façade of the burning building
				Heat fluxes to other buildings
				Design methods
			Burning forests and vegetation
		Burning vehicles
		Heat fluxes in pre-flashover room fires
		Heat fluxes on burning walls
		Heat fluxes in post-flashover room fires
		Attenuation of radiation by window glass and window screens
	Electric phenomena
		Electric discharges
			The electric spark
			The electric arc
				Arcing and vibration
				Pressures developed by an electric arc
		Electric current
			Overheating wires
			Overheating electrical connections
			Ejection of hot particles
			Dendrites
			Adventitious batteries
		Static electricity
			General principles
			Discharge types
				Spark
				Corona discharge
				Brush discharge
				Powder heap discharge
				Propagating brush discharge
				Lightning-like discharge
			Measuring of discharges
			Electrostatic charging and discharging of solids
			Electrostatic charging and discharging of persons and apparel
			Electrostatic charging and discharging of granular materials
			Electrostatic charging and discharging of liquids
			Safety measures
		Lightning
			Ordinary lightning
				Ignitions from lightning
			St. Elmo’s fire
			Ball lightning
		Exploding wires
		Electromagnetic waves and particulate radiation
			Eddy currents
			Radio transmitters
			Nuclear weapons
	Light energy, lenses and mirrors
	Aerodynamic heating
	Further readings
	References
Chapter 12. Preventive measures
	General precautions
	Measures against static electricity
	Lightning protection
	Arresters—flame and spark
		Flame arresters
		Spark arresters
	Design of electrical equipment for flammable atmospheres
		NEC requirements
			Article 500 (traditional classification)
			Article 505 (IEC classification)
		Design of equipment for hazardous locations
			Explosionproof equipment
			Dust-ignition-proof equipment
			Intrinsically safe equipment
				Test methods: UL 913 and IEC 60079-11
				Test methods: HSE high-current apparatus
				Test methods: SMRE tests
			Increased safety protection
			Pressurized enclosures
			Sealed, encapsulated, oil-immersed, and powder-filled devices
			Miscellaneous protection strategies
		Design of equipment for mining
	Arc fault and cord fault interrupters
	Further readings
	References
Chapter 13. Special topics
	Explosions in buildings
	Diffusion of flammable vapors from spills
	Ignition of gas jets from broken pipes
	Damages and ignitions from gas explosions
	Ignition in room fires
		Upper layer ignition in room fires
	Backdrafts and smoke explosions
	Rekindle ignitions
	Unconfined vapor cloud explosions (UVCEs)
	BLEVEs (boiling liquid, expanding vapor explosions)
	Oxygen-enriched atmospheres
		Test methods
			ASTM G 72 autoignition test
			ASTM G 124 piloted ignition test for metals
			ASTM G 74 gas stream impact test
			ASTM D 2512 and ASTM G 86 mechanical impact tests
			ASTM G 125 oxygen-index test for oxygen-enriched atmospheres
	Wildland-urban interface
	Determining ignition properties in fire investigations
	Further readings
	References
Color plates
Chapter 14. A to Z
	Introduction
	Accelerants in incendiary fires
	Acetylene and related compounds
	Aerosol cans
	Agricultural products
		Self-heating
		Electrostatic properties
	Air compressors and compressed air systems
	Aircraft cabin wall panels
	Airplanes
	Alcoholic beverages
	Aldehydes
	Ammonia
	Ammonium nitrate and ANFO
	Ammonium perchlorate
	Antifreeze
	Arsenic compounds
	Ashes
	Asphalt
	Automatic transmission fluid
	Aviation fuels
	Azides
	Bagasse and bagasse products
	Boranes
	Boron
	Brake fluid
	Calcium resinate
	Camping fuel
	Candles
		Tea candles
		Gel candles
	Carbon disulfide
	Carbon monoxide
	Cellulose
	Cellulose insulation
	Cellulose nitrate, Celluloid, pyroxylin
	Charcoal, coke, and related products
		Charcoal
		Charcoal briquettes
		Coke
		Activated charcoal
		Activated carbon
	Chimneys and flues6F
	5-Chloro-1,2,3-thiadiazole
	Christmas trees, artificial
	Cigarettes and cigars
	Clothes irons
	CO2 extinguishers
	Coal
		Properties of coal
			Porosity and sorption of water
		External ignition
		Self-heating
		Coal dust
		Coal pulverizers
	Coffeemakers and teapots7F
	Composite materials
		Fiber-reinforced plastic
		High-pressure laminates, low-pressure laminates, and related products
	Compost, manure, garbage, sewage, and landfills
	Computer and information technology equipment
	Conveyor belts
	Cooking appliances
		Grills
	Cork
	Cotton
	Crankcase explosions
	Crude oil
	Curling irons and hair dryers
	Curtains
	Diapers, disposable
	Diesel fuel
	Dinitrosopentamethylenetetramine
	Dishwashers
	Dryers and washers (for clothes)
	Dryers (process dryers)
	Dung, fecal matter
	Dusts
		Ignition of layers
		Explosions
	Earthquakes
	Electric (general statistics)
	Electric appliances and electronic equipment
		High-limit switches
	Electric batteries
	Electric blankets and mattress pads
	Electric circuit interruption devices
	Electric fences
	Electric lamps and lighting fixtures
		Ordinary incandescent lamps
		Halogen lamps
		Arc discharge lamps9F
		Fluorescent lamps
		Lighting fixtures: Incandescent
			Christmas tree lights
		Lighting fixtures: Fluorescent
	Electric motors
	Electric outlets, plugs and connections
		Failures at plugs
		Failures at outlets
		Miscellaneous connection failures
		The aluminum wiring problem
		Incendiarism
	Electric switches
	Electric transmission and distribution systems
		Transformers
		Busbars, switchboards, and panelboards
		Insulated distribution cables
		Service drops and high current capacity conduits
		High voltage insulators
	Electric wires and cables
		Modes of ignition of wiring
			Arcing
				Carbonization of insulation (arc tracking)
				Externally-induced ionization of air
				Short circuits
				High-voltage breakdown in low-voltage circuits
			Excessive ohmic heating
				Gross overloads
				Excessive thermal insulation
				Stray currents and ground faults
				Overvoltage and floating neutrals
				Harmonic distortion or overload
			Ignition from external heating
		Contributory factors
			Mechanical injury
				Solid conductors—parallel arcing
				Solid conductors—series arcing
				Stranded conductors—parallel arcing
				Stranded conductors—series arcing (last strand problem)
				Excessive pressure and creep of insulation
				Overdriven staples
			Poor splices or terminations
			Degradation and aging of insulation
			Partial discharges
			Chemical damage
			Alloying during melting
		Appliance cords and extension cords
		Impaired cooling
		Wires in steel conduits
		Electric wiring: Cause or victim?
			Arc beads and fire-melted wires
			Proposed methods of distinguishing ‘cause’ from ‘victim’ beads
				Microscopy methods
				Raman spectroscopy and X-ray microanalysis methods
				AES, SIMS, and ESCA methods
			Viability of proposed schemes
	Electric wiring and equipment in motor vehicles
	Electric wiring in aircraft
	Electronic components
	Engines, diesel
	Ethers
	Ethylene
	Ethylene glycol
	Ethylene oxide
	Explosives
	Fabrics
		Ignition temperature
		Flame ignition
		Radiant ignition
		Convective heating
		Other forms of heating
		Elevated oxygen conditions
		Effects of treatments
	Farm machinery
	Feedstuffs
	Felt
	Fertilizers
	Fibers
	Fibers covered with oil
	Fire hoses
	Fishmeal
	Floor buffers
	Floor coverings
	Foodstuffs
	Forest materials, vegetation, and hay
		Ignition by hot gases and hot surfaces
		Ignition by matches and small flames
		Ignition by cigarettes
		Ignition by lightning
		Ignition from contact with power lines
		Radiant ignition
		Ignition by brands or small hot particles
			Spotting fires
		Self-heating
	Fuel oil
	Furnaces and boilers
		Gas-fired
		Oil-fired
	Furniture
	Gas meters, regulators, and piping
	Gasoline
		Gasoline substitutes
		Filling of portable gasoline containers
		Fueling vehicles at filling stations
		Filling station tanks
	Ground fault circuit interrupters
	Gypsum wallboard
	Hair
	Hairdresser chemicals
	Heat guns
	Heat tapes and heat cables
	Heat transfer liquids
	Heaters, catalytic
	Heaters, electric
		Built-in heaters
		Portable heaters
		House furnaces
	Heating equipment (general statistics)
	High-temperature accelerants
	Hops
	Humans
		Human skin
	HVAC equipment
	Hydraulic fluids
	Hydrazine
	Hydrocarbon gases
	Hydrogen
		Explosions due to adventitious hydrogen presence
	Hydroxylamine
	Incendiary timing, delay, and actuation devices
	Insecticides, pesticides, fungicides
	Iron sulfides
	Jute
	Kerosene
	Kerosene heaters
	Lambswool pads, imitation
	Lawn mowers
	Lime
	LNG and LPG
	Marijuana and hemp
	Matches and lighters
		Properties of matches
		Ignition potential of blown-out matches
		Lighters
	Metal alkyls
	Metal alloys
	Metal carbonyls
	Metal hydrides
	Metal oxides
	Metals
		Aluminum
			Bulk material
			Single particles
			Dust clouds and layers
			Aluminum in physical mixtures
		Antimony
		Barium
		Beryllium
		Bismuth
		Brass
		Cadmium
		Calcium
		Cerium, pyrophor, and cigarette-lighter ‘flints’
		Cesium
		Chromium
		Cobalt
		Copper
		Hafnium
		Iron and steel
		Lead
		Lithium
		Magnesium
		Manganese
		Molybdenum
		Nickel
		Plutonium
		Potassium
		Rare earth elements
		Rubidium
		Sodium
		Strontium
		Tantalum
		Thorium
		Tin
		Titanium
		Tungsten
		Uranium
		Zinc
		Zirconium
	Methane and natural gas
	Methyl bromide
	Methylene chloride
	Microwave ovens
	Mineral wool
	Motor vehicles
		Flammability of interior combustibles
		Automobile exhaust systems
		Automotive air bags
		Flammable refrigerants
	Neon lighting
	Nitrates
	Nitric acid and nitrogen oxides
	Nitrides
	Nitrogen, liquid
	Oils
		Vegetable and animal oils
		The iodine number test
		Mineral and synthetic oils
	Oil-water emulsions
	Organometallic compounds
	Otto fuel II
	Oxidizing chemicals
		Halogen fluorides
		Gaseous fluorine
		Liquid chlorine
		Water purifying and bleaching chemicals
		Carbon tetrachloride
		Aircraft oxygen generation canisters
		Compressed gaseous oxygen
		Liquid oxygen
	Oxygen pumps
	Oxygen regulators
	Paints, dyes, and related substances
	Paper products
		Paper
		Cardboard
		Paper vapor barrier
	Peat and organic soils
	Perchloric acid
	Perfluorocarbons
	Peroxides
		Inorganic peroxides
		Organic peroxides
	Pharmaceuticals
	Phosphines
	Phosphorus
	Pillows
	Pipe insulation
	Plastics
		Self-heating of solid plastics
		Elastomers and foams
	Potassium chlorate
	Powdered milk
	Power steering fluid
	Propane
	Propylene oxide
	Pyrotechnics
	Radio and audio equipment
	Railroads
	Rayon
	Refrigerators
	Rice husks
	Roofing materials
	Sanding machines
	Saunas
	Shredded materials
	Siding, plastic
	Silane and chlorosilanes
	Silicon
	Silicone fluids and polymers
	Skins and leathers
	Soaps
	Sodium chlorate and sodium chlorite
	Sodium dithionite
	Solder and soldering irons
	Soots, lampblack, other ‘blacks’
	Soybeans
	Spas
	Stearic acid
	Steel turnings
	Styrene
	Sugar
	Sulfur
	Surge suppressor MOV devices
	Surgical tubing
	Tanks
		Asphalt storage tanks
	Tar (wood)
	Telephones, cellular
	Television sets and computer monitors
	Tents
	Textile wall coverings
	Thatch
	Thermostats
	Tinder
	Tires and wheels
	Toasters
	Town gas
	Turpentine
	Unsymmetrical dimethylhydrazine
	Upholstered furniture and mattresses
		Smoldering and ignition from cigarettes
			The possibility of safer cigarettes
		Ignition from small flames
		Ignitability from radiant heat
		Ignition from burning brands
		Ignitability mode comparisons
		Effect of wear and soiling
		UFAC and BIFMA requirements for ignitability
		California TB 117 standard for ignitability
		Flaming-source ignition experiments and proposed test by CPSC
		UK furniture regulations
		Mattresses
	Vacuum cleaners
	Wastes
	Water heaters
		Electric water heaters
		Gas-fired water heaters
	Welding33F
	Wood and related products
		Whole wood
			Properties of wood and its degradation and combustion
			Ignition temperature of wood
			Ignition from radiant heat flux
				Experimental results on piloted ignition
				Experimental results on autoignition
				Other radiant ignition effects
			Ignition from flames
			Glowing or smoldering ignition and ignition by firebrands
			Ignition from other external heating sources
			Effects of various factors on external ignition of wood
				Fire retardants
				Treatment with preservatives
				Impurities
				Charring
				Weathering, aging, decay, and rot
			Self-heating, ‘pyrophoric carbon,’ and ignitions from hot pipes
			Ignition by arc tracking
		Wood components
		Painted wood
		Hardboard
		Fiberboard
		Plywood
		Particleboard and oriented strand board
		Wood sawdust, chips, and wastes
		Oiled sawdust
		Wood pulp
		Shingles and shakes
	Wood-burning appliances
	Wool
	Further readings
	References
Chapter 15. Tables
	Introduction
	Pure chemical substances
	Mixtures and commercial products
	Aviation hydraulic fluids and lubricating oils
	Refrigerants
	NEC Groups according to chemical families
	Dusts
	Ignition temperatures of solids
	Radiant ignition of plastics and elastomers
	Miscellaneous thermophysical properties of solids
	Further readings
	References
Index
Endpapers




نظرات کاربران