دسترسی نامحدود
برای کاربرانی که ثبت نام کرده اند
برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید
در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید
برای کاربرانی که ثبت نام کرده اند
درصورت عدم همخوانی توضیحات با کتاب
از ساعت 7 صبح تا 10 شب
ویرایش: 08
نویسندگان: FANTOMASPING
سری: 08
ناشر: IEEE
سال نشر: 2005
تعداد صفحات: 188
زبان: English
فرمت فایل : PDF (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود)
حجم فایل: 15 مگابایت
کلمات کلیدی مربوط به کتاب IEEE MTT-V053-I08 (2005-08): است
در صورت تبدیل فایل کتاب IEEE MTT-V053-I08 (2005-08) به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.
توجه داشته باشید کتاب IEEE MTT-V053-I08 (2005-08) نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.
010 - 01492641......Page 1
020 - 10.1109@TMTT.2005.855803......Page 3
I. I NTRODUCTION......Page 4
A. Modal Basic Set......Page 5
C. Modal Evolutionary Equations......Page 6
A. Preliminaries to Calculations......Page 7
B. Numerical Results......Page 8
VI. M AIN R ESULTS AND C OMMENTS......Page 9
S. Aksoy and O. A. Tretyakov, The evolution equations in study o......Page 10
II. F ABRICATION OF T HROUGH -W AFER V IA -H OLES......Page 11
TABLE I E TCHING R ATE OF THE V IA -H OLES W ITH D IFFERENT D IM......Page 12
A. Deembedding Method......Page 13
B. TWI Vias Impedance......Page 14
Fig.€12. Measured: (a) inductance and (b) resistance of the 70-......Page 15
D. Modeling of the TWI Vias......Page 16
Fig.€18. Comparison between the: (a) real and (b) imaginary part......Page 17
G. I. Costache, M. W. Nemes, and E. M. Petriu, Finite element me......Page 18
III. S PACE OF S OLUTIONS C HARACTERIZATION......Page 20
B. Maximum Output Method......Page 21
V. R ESULTS AND C OMPARISONS......Page 22
C. Improvement Under UMTS Specifications......Page 23
Y.-C. Jeong, Y.-J. Song, I.-J. Oh, and C.-D. Kim, A novel adapti......Page 24
II. T RANSITION AND E XCITATION M ECHANISM......Page 26
Fig.€2. Propagation constant in a GCPW with lateral walls. The d......Page 27
IV. E QUIVALENT C IRCUIT......Page 28
Fig.€7. (a) Equivalent circuit taking into account both end-stub......Page 29
Fig.€10. Impedance values for the GCPW and SIRW. $S = 0.914$ mm,......Page 30
Fig.€14. Fabricated transition. Only a quarter of the structure......Page 31
M. J. Hill, R. W. Ziolkowski, and J. Papapolymerou, A high- $Q$......Page 32
R. N. Simons, Coplanar Waveguide Circuits, Components and System......Page 33
I. I NTRODUCTION......Page 34
A. Formulation of the Model......Page 35
Fig. 3. Magnetic walls are located at ${ y}={-}{ d}/2$ and ${ y}......Page 36
Fig.€5. Calculated attenuation per unit cell for EBG structure o......Page 37
B. Estimates of the Stopband Edges......Page 38
C. Alternate Method for Calculating Attenuation......Page 39
Fig.€9. Measured and calculated insertion loss for EBG structure......Page 40
TABLE III O VERALL B OARD D IMENSIONS AND P ORT L OCATIONS IN TH......Page 41
V. C ONCLUSION......Page 42
R. E. Collin, Foundations for Microwave Engineering, 2nd ed. New......Page 43
I. Novak, Measuring milliohms and picohenries in power distribut......Page 44
I. I NTRODUCTION......Page 45
Fig. 2. Modulus of $S_{21}$ for the reference filter ( ) shown i......Page 46
Fig.€6. Effect of number $n$ of unit cells on the modulus of $S_......Page 47
1) Design: The design of an electronically tunable CPW filter ce......Page 48
TABLE II E FFECT OF S ERIES R ESISTANCE, S ERIES I NDUCTANCE, AN......Page 49
b) Large-Signal Analysis: Here, we report the measured filter di......Page 50
B. Simulated MEMS Tunable Bandpass Filter......Page 51
A. Tombak, J. P. Maria, F. T. Ayguavives, Z. Jin, G. T. Stauf, A......Page 52
L. Dussopt and G. M. Rebeiz, High- $Q$ millimeter-wave MEMS vara......Page 53
Fig.€1. Side view of a connection consisting of two rectangular......Page 54
Fig.€2. Model for the topography of nominally flat surfaces: one......Page 55
III. E LECTRICAL C ONTACT OF M ETALS S EPARATED BY A T HIN D IEL......Page 56
B. MM Contacts Case......Page 57
IV. W AVEGUIDE J UNCTION M ODEL: V OLTAGE D ROP C ALCULATION......Page 58
A. Mathematical Approach......Page 60
Fig.€6. Third-order PIM level as a function of the covering laye......Page 61
B. Physical Approach......Page 62
J. W. Boyhan, H. F. Lenzig, and C. Koduru, Satellite passive int......Page 63
C. G. Karagiannopoulos, P. D. Bourkas, C. T. Dervos, and C. A. K......Page 64
I. I NTRODUCTION......Page 65
Fig.€1. Cross section $S$ with boundary $c$ of a conducting cyli......Page 66
III. D IRICHLET C HARACTERIZATION......Page 67
A. Analytical Solution......Page 68
B. Discretized Form of the Solution......Page 69
V. D ETERMINATION OF R ESISTANCE AND I NDUCTANCE M ATRICES......Page 70
Fig.€5. Contour plot of the normalized absolute value of the ele......Page 72
B. Resistance and Inductance Matrices......Page 73
Fig. 10. Resistance in $m\\Omega/{\\hbox{m}}$ as a function of fre......Page 74
Fig.€13. Resistance matrix elements in $\\Omega$ /m as a function......Page 75
VII. C ONCLUSION......Page 76
R. E. Collin, Field Theory of Guided Waves, 2nd ed. Piscataway,......Page 77
I. I NTRODUCTION......Page 78
A. Prototype LPF and Adoption of DGS......Page 79
B. Determination of the DGS for ${ L}_{3}$......Page 80
C. Realization of the Shunt Capacitance ${ C}_{{ k}2}$......Page 81
IV. P ERFORMANCE OF THE P ROPOSED F IVE -P OLE DGS-LPF......Page 82
A. Sweet, MIC & MMIC Amplifier and Oscillator Circuit Design . B......Page 83
Fig.€1. (a) Cross section of the bridge-connected (or bridged) N......Page 85
III. C OUPLER D ESIGN......Page 86
Fig.€4. Dispersion curves of the bridged NRD-guides as $c/a$ is......Page 87
Fig.€6. Configurations of the bridged NRD-guide coupler and the......Page 88
A. Bacha and K. Wu, LSE-mode balun for hybrid integration of NRD......Page 89
A. 2-D Finite-Element Model......Page 91
B. Generalized Non-Hermitian Lanczos Algorithm......Page 92
IV. F AST F REQUENCY S WEEP......Page 93
B. Anisotropic Image Waveguide......Page 94
D. Lossy Microstrip Line......Page 95
VI. C ONCLUSIONS......Page 96
W. T. Weeks, Calculation of coefficients of capacitance of multi......Page 97
II. T ECHNOLOGY......Page 98
Fig.€3. Simulated characteristics of the filters including paras......Page 99
Fig. 5. Characteristics of drain source resistance $({ R}_{\\rm d......Page 100
Fig.€9. Mixer with compact chip size of 0.38 mm $\\, \\times\\,$ 0.......Page 101
TABLE I M EASURED AND S IMULATED P ORT I SOLATION AT 5-dBm LO P......Page 102
N. Zamdmer, J. Kim, R. Trzcinski, J.-O. Plochart, S. Narasimha,......Page 103
M. R. Barber, Noise figure and conversion loss of the Schottky b......Page 104
B. Resonator Design......Page 105
Fig.€3. Circuit model and practical realization of a unit cell i......Page 106
A. Fabrication, Implementation, and Biasing......Page 107
Fig.€7. Measured: (a) insertion loss and (b) return of the tunab......Page 108
V. C ONCLUSION......Page 109
A. R. Brown and G. M. Rebeiz, A varactor-tuned RF filter, IEEE T......Page 110
A. Matching Impedance of a Nonreciprocal Three-Port......Page 111
B. Matching Impedance of the Stripline FCL Circulator......Page 112
Fig.€3. Smith chart plot of simulation results for $Z_1$ normali......Page 113
C. Realization of the Matching Network......Page 114
Fig.€11. Scattering parameter of the FCL circulator with a match......Page 115
B. Microstrip FCL Circulator With Matching Network......Page 116
Fig.€15. Measurement of the scattering matrix of the device when......Page 117
P. A. Pucel et al., Losses in microstrip, IEEE Trans. Microw. Th......Page 118
I. I NTRODUCTION......Page 119
Proof: Only the case of ${ h}_{ ij}$ -parameters will be discuss......Page 120
Theorem 2: Provided stability for a given pair of input and outp......Page 121
Case I1: ${ B}_{{ S}1} < 0$ .......Page 122
Fig. 6. (a) Frequency plot of the proposed stability factors ${......Page 123
F. Centurelli, G. Scotti, P. Tommasino, and A. Trifiletti, A syn......Page 124
A. Basic Operating Principle......Page 126
1) Implementation on the Top Conductor Plane: The first method i......Page 127
A. Implementation Transformer on the Ground Plane $({ n}=2)$......Page 128
TABLE IV S IMULATION R ESULTS OF T UNABLE I MPEDANCE T RANSFORME......Page 129
C. Final Structure of the Tunable Impedance Transformer......Page 130
Fig.€13. Experimental result for the tunable impedance transform......Page 131
G. Hiller, Predict PIN-diode switch distortion, Microwaves RF, p......Page 132
I. I NTRODUCTION......Page 133
TABLE I NIOS I NSTRUMENT S PECIFICATIONS......Page 134
TABLE II S TEREOSCOPIC AND T RUE D ISTANCES FOR M ANUALLY S ELEC......Page 135
Fig.€4. Effect of radiometer noise on the directional resolution......Page 136
B. Systematic Errors......Page 137
K. Rohlfs and T. L. Wilson, Tools of Radio Astronomy, Second com......Page 138
II. T HEORY......Page 139
III. S IMULATION R ESULTS......Page 140
V. C ONCLUSION......Page 141
A. Oppenheim and R. Schaffer, Discrete Time Signal Processing .......Page 142
II. D ESIGN AND A NALYSIS......Page 143
C. Effect of Coaxial Probes......Page 144
Fig.€3 Schematic of OMT at a single frequency band.......Page 145
Fig.€7 Photograph and drawing of the eight-port OMT with orthogo......Page 146
S. Hopfer, Design of ridged waveguides, IRE Trans. Microw. Theor......Page 147
II. M IRROR S YNTHESIS......Page 149
III. M ETHOD OF I RRADIANCE M OMENTS......Page 150
TABLE I I RRADIANCE M OMENTS $\\bar {M}_{pq}$ AT P LANE I......Page 151
Fig.€8. Window pattern for the mode converter with mirrors 3 and......Page 152
S. N. Vlasov and V. I. Talanov, Wave Self-Focusing . Nizhny Novg......Page 153
A. Synthesis of Lumped Out-of-Phase Power Splitters......Page 155
TABLE I T RIGONOMETRIC F UNCTIONS FOR C OMPONENT V ALUES OF U NI......Page 156
A. Design......Page 157
Fig.€6. Measurements (symbols) and design simulations (lines) of......Page 158
I. H. Lin, C. Caloz, and T. Itoh, A branch line coupler with two......Page 159
A. Mode for the Dielectric Slab Rotman Lens......Page 161
Fig.€3. Geometry and design parameters of a Rotman lens.......Page 162
III. M EASUREMENTS OF THE D IELECTRIC S LAB R OTMAN L ENS......Page 163
Fig. 6. (a) Power fraction reflected from beam port 5 $(\\vert {......Page 164
S. F. Peik and J. Heinstadt, Multiple beam microstrip array fed......Page 165
I. I NTRODUCTION......Page 167
III. M ANIFOLD D ESIGN......Page 168
Fig.€5. $H$ -plane T-junction and the connection geometry to the......Page 169
V. R ESULTS......Page 170
W. H. Press et al., Numerical Recipes in Fortran. The Art of Sci......Page 171
II. E XTRACTING D IODE M ODEL P ARAMETERS......Page 172
III. O NE -P ORT T UNNEL -D IODE M ODELING......Page 173
Fig.€7. Simulated and measured small-signal $S$ -parameter.......Page 174
TABLE II O PTIMIZED V OLTAGE -I NDEPENDENT P ARAMETERS OF F IG .......Page 175
V. C ONCLUSION......Page 176
J. T. Louhi and A. V. Räisänen, On the modeling and optimization......Page 177
II. O PERATION OF PA B ASED ON THE D OHERTY C ONCEPT......Page 178
III. I MPLEMENTATION OF THE L OAD -M ODULATION PA IN MMIC F ORM......Page 179
Fig.€5. MMIC chip and PCB board. (a) MMIC chip. (b) Test board m......Page 180
Fig.€7. RF power and linearity performances of the PA. (a) Gain......Page 181
Fig. 10. Gain and efficiency versus ${ P}_{\\rm out}$ for AMPS mo......Page 182
Y.-J. Jeon et al., A highly efficient CDMA power amplifier based......Page 183
280 - 01492668......Page 184
290 - 01492669......Page 185
300 - 01492670......Page 186
310 - 01492671......Page 187
320 - 01492672......Page 188