دسترسی نامحدود
برای کاربرانی که ثبت نام کرده اند
برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید
در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید
برای کاربرانی که ثبت نام کرده اند
درصورت عدم همخوانی توضیحات با کتاب
از ساعت 7 صبح تا 10 شب
ویرایش: نویسندگان: Corinna Möhrlen, John W. Zack, Gregor Giebel سری: Wind Energy Engineering ISBN (شابک) : 0443186812, 9780443186813 ناشر: Academic Press سال نشر: 2022 تعداد صفحات: 388 [390] زبان: English فرمت فایل : PDF (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود) حجم فایل: 7 Mb
در صورت تبدیل فایل کتاب IEA Wind Recommended Practice for the Implementation of Renewable Energy Forecasting Solutions به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.
توجه داشته باشید کتاب روش پیشنهادی IEA Wind برای پیاده سازی راه حل های پیش بینی انرژی های تجدیدپذیر نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.
Front Cover IEA Wind Recommended Practice for the Implementation of Renewable Energy Forecasting Solutions Copyright Contents List of figures List of tables Biography Dr. Corinna Möhrlen Dr. John W. Zack Dr. Gregor Giebel Preface About the IEA Wind TCP and Task 36 and 51 Part 1 Forecast solution selection process 1 Forecast solution selection process 1.1 Before you start reading 1.2 Background and introduction 1.3 Objectives 1.4 Definitions 2 Initial considerations 2.1 Tackling the task of engaging a forecaster for the first time 2.2 Purpose and requirements of a forecasting solution 2.3 Adding uncertainty forecasts to forecasting solutions 2.4 Information table for specific topic targets 3 Decision support tool 3.1 Initial forecast system planning 3.2 IT infrastructure considerations 3.2.1 IT requirements for single versus multiple forecast vendors 3.2.2 IT requirements for deterministic versus probabilistic forecasts 3.3 Establishment of a requirement list 3.3.1 Requirement list 3.4 Short-term solution 3.5 Long-term solution 3.6 Going forward with an established IT system 3.7 Complexity level of the existing IT solution 3.8 Selection of a new vendor versus benchmarking existing vendor 3.9 RFP evaluation criteria for a forecast solution 3.9.1 Forecast solution type 3.9.1.1 Single versus multiple forecast providers 3.9.1.2 Deterministic versus probabilistic 3.9.1.3 Forecast horizons 3.9.2 Vendor capabilities 3.9.2.1 Experience and reliability 3.9.2.2 Ability to maintain state-of-the-art performance 3.9.2.3 Performance incentive schemes 3.9.3 Evaluation of services 3.9.3.1 Price versus value and quality 3.9.3.2 Forecast performance 3.9.3.3 Solution characteristics 3.9.3.4 Support structure 3.9.3.5 Redundancy structure 3.9.3.6 Escalation structure 3.10 Forecast methodology selection for use of probabilistic forecasts 3.10.1 Definitions of uncertainty 3.10.2 Uncertainty forecasting methods 3.10.3 Training tools for ensemble forecasting 3.10.4 Applications of uncertainty forecasts in the energy industry 3.10.5 Visualization of forecast uncertainty 4 Data communication 4.1 Terminology 4.2 Data description 4.2.1 LEVEL 1 – data description 4.3 Data format and exchange 4.3.1 LEVEL 1 data format and exchange 4.3.2 LEVEL 2 – data format and exchange 4.4 Sample formatted template files and schemas 5 Concluding remarks Part 2 Designing and executing forecasting benchmarks and trials 6 Designing and executing benchmarks and trials 6.1 Before you start reading 6.2 Background and introduction 6.3 Definitions 6.3.1 Renewable energy forecast benchmark 6.3.2 Renewable energy forecast trial 6.4 Objectives 7 Initial considerations 7.1 Deciding whether to conduct a trial or benchmark 7.2 Benefits of trials and benchmarks 7.3 Limitations with trials and benchmarks 7.4 Time lines and forecast periods in a trial or benchmark 7.5 1-Page ``cheat sheet'' checklist 8 Conducting a benchmark or trial 8.1 Phase 1: preparation 8.1.1 Key considerations in the preparation phase 8.1.2 Metadata gathering in the preparation phase 8.1.3 Historical data gathering in the preparation phase 8.1.4 IT/data considerations in the preparation phase 8.1.5 Communication in the preparation phase 8.1.6 Test run in the preparation phase 8.2 Phase 2: During benchmark/trial 8.2.1 Communication during the b/t 8.2.2 Forecast validation and reporting during the b/t 8.3 Phase 3: Post trial or benchmark 8.3.1 Communication at the end of the b/t 8.3.2 Forecast validation & reporting after the b/t 9 Considerations for probabilistic benchmarks and trials 9.1 Preparation phase challenges for probabilistic b/t 9.2 Evaluation challenges for probabilistic b/t 10 Best practice recommendations for benchmarks/trials 10.1 Best practice for b/t 10.2 Pitfalls to avoid Part 3 Forecast solution evaluation 11 Forecast solution evaluation 11.1 Before you start reading 11.2 Background and introduction 12 Overview of evaluation uncertainty 12.1 Representativeness 12.1.1 Size and composition of the evaluation sample 12.1.2 Data quality 12.1.3 Forecast submission control 12.1.4 Process information dissemination 12.2 Significance 12.2.1 Quantification of uncertainty 12.2.1.1 Method 1: repeating the evaluation task 12.2.1.2 Method 2: bootstrap resampling 12.3 Relevance 13 Measurement data processing and control 13.1 Uncertainty of instrumentation signals and measurements 13.2 Measurement data reporting and collection 13.2.1 Non-weather related production reductions 13.2.2 Aggregation of measurement data in time and space 13.3 Measurement data processing and archiving 13.4 Quality assurance and quality control 14 Assessment of forecast performance 14.1 Forecast attributes at metric selection 14.1.1 ``Typical'' error metrics 14.1.2 Outlier/extreme error 14.1.3 Empirical error distribution 14.1.4 Binary or multi-criteria events 14.2 Prediction intervals and predictive distributions 14.3 Probabilistic forecast assessment methods 14.3.1 Brier scores 14.3.2 Ranked probability (skill) score (RP(S)s) 14.3.2.1 The continuous ranked probability skill and energy score 14.3.2.2 Logarithmic and variogram scoring rules 14.3.3 Reliability measures 14.3.3.1 Rank histogram 14.3.3.2 Reliability (calibration) diagram 14.3.4 Event discrimination ability: relative operating characteristic (ROC) 14.3.5 Uncertainty in forecasts: Rény entropy 14.4 Metric-based forecast optimization 14.5 Post-processing of ensemble forecasts 15 Best practice recommendations for forecast evaluation 15.1 Developing an evaluation framework 15.1.1 Scoring rules for comparison of forecast types 15.1.2 Forecast and forecast error analysis 15.1.3 Choice of deterministic verification methods 15.1.3.1 Dichotomous event evaluation 15.1.3.2 Analyzing forecast error spread with box and wiskers plots 15.1.3.3 Visualizing the error frequency distribution with histograms 15.1.4 Specific probabilistic forecast verification 15.1.4.1 Choice of application for benchmarking probabilistic forecasts 15.1.5 Establishing a cost function or evaluation matrix 15.1.5.1 Evaluation matrix 15.2 Operational forecast value maximization 15.2.1 Performance monitoring 15.2.1.1 Importance of performance monitoring for different time periods 15.2.2 Forecast diagnostics and continuous improvement 15.2.3 Maximization of forecast value 15.2.4 Maintaining state-of-the-art performance 15.2.4.1 Significance test for new developments 15.2.5 Incentivization 15.3 Evaluation of benchmarks and trials 15.3.1 Applying the principles of representativeness, significance, and relevance 15.3.2 Evaluation preparation in the execution phase 15.3.3 Performance analysis in the evaluation phase 15.3.4 Evaluation examples from a benchmark 15.4 Use cases 15.4.1 Energy trading and balancing 15.4.1.1 Forecast error cost functions 15.4.2 General ramping forecasts 15.4.2.1 Amplitude versus phase 15.4.2.2 Costs of false alarms 15.4.3 Evaluation of probabilistic ramp forecasts for reserve allocation 15.4.3.1 Definition of error conditions for the forecast Part 4 Meteorological and power data requirements for real-time forecasting applications 16 Meteorological and power data requirements for real-time forecasting applications 16.1 Before you start reading 16.2 Background and introduction 16.3 Structure and recommended use 17 Use and application of real-time meteorological measurements 17.1 Application-specific requirements 17.1.1 Application-specific requirements for meteorological data 17.1.2 Applications in system operation, balancing and trading 17.1.3 Applications in wind turbine and wind farm operation 17.1.4 Solar/PV plant operation 17.2 Available and applicable standards for real-time meteorological and power measurements 17.2.1 Standards and guidelines for wind measurements 17.2.2 Standards and guidelines for solar measurements 17.3 Standards and guidelines for general meteorological measurements 17.4 Data communication 18 Meteorological instrumentation for real-time operation 18.1 Instrumentation for wind projects 18.1.1 Cup anemometers 18.1.2 Sonic and ultra-sonic anemometers 18.1.3 Remote sensing devices 18.1.4 Met mast sensor deployment 18.1.5 Nacelle sensor deployment 18.2 Instrumentation for solar projects 18.2.1 Point measurements 18.2.2 All sky imagers 18.2.3 Satellite data 19 Power measurements for real-time operation 19.1 Live power and related measurements 19.2 Measurement systems 19.2.1 Connection-point meters 19.2.2 Wind power SCADA systems 19.2.3 Solar power SCADA systems 19.3 Power available signals 19.3.1 Embedded wind and solar ``behind the meter'' 19.4 Live power data in forecasting 19.4.1 Specifics for producers of forecasts 19.4.2 Specifics for consumers/users of forecasts 19.5 Summary of best practices 20 Measurement setup and calibration 20.1 Selection of instrumentation 20.1.1 Selection of instrumentation for wind projects 20.1.2 Selection of instrumentation for solar power plants 20.1.3 Measurement characteristics of different technologies 20.1.3.1 Measurement characteristics of LIDARs 20.1.3.2 Lightning effects on instrumentation 20.1.3.3 Measurement characteristics of SODARs 20.2 Location of measurements 20.2.1 Location of representative measurements for wind projects 20.2.2 Location of representative measurements for solar projects 20.3 Maintenance and inspection schedules 20.3.1 Maintenance of radiometers 21 Assessment of instrumentation performance 21.1 Measurement data processing 21.2 Uncertainty expression in measurements 21.3 Known issues of uncertainty in specific instrumentation 21.3.1 Effects of uncertainty in nacelle wind speed measurements and mitigation methods 21.3.1.1 Wind speed reduction in the induction zone 21.3.1.2 Wake effects from rotating blades 21.3.1.3 Yaw misalignment of wind turbine for scanning LIDARs 21.3.2 Application of nacelle wind speeds in real-time NWP data assimilation 21.3.3 Known uncertainty in radiation measurements 21.4 General data quality control and quality assurance (QCQA) 21.5 Historic quality control (QC) 21.5.1 QC for wind forecasting applications 21.5.1.1 Specific control procedures 21.5.1.2 Practical methodology for quality control of measurement for wind applications 21.5.1.3 Statistical tests and metrics for the QC process 21.5.2 QC for solar applications 21.6 Real-time quality control (QC) 21.6.1 Data screening in real-time wind and solar forecast applications 21.6.2 Data sampling thresholds in real-time wind and solar forecast applications 21.6.3 Real-time QC for wind and solar applications 21.6.3.1 Data screening 21.6.4 Solar forecasting specific real-time QC 22 Best practice recommendations 22.1 Definitions 22.2 Instrumentation 22.3 Recommendations for real-time measurements by application type 22.4 Recommendations for real-time measurements for power grid and utility-scale operation 22.4.1 Recommendations on quality requirements 22.4.1.1 Requirements for wind forecasting applications according to environment 22.4.1.2 Wind measurement alternatives to met masts 22.4.1.3 Recommendations for solar forecasting applications 22.4.1.4 Recommendations for power measurements for real-time wind and solar forecasting 22.4.2 Accuracy and resolution recommendations 22.4.3 Validation and verification recommendations 22.4.3.1 Practical methodology for historic quality control of meteorological measurements 22.4.3.2 Data screening in real-time environments 22.5 Recommendations for real-time measurements for power plant operation and monitoring 22.5.1 Data quality recommendations 22.5.1.1 Requirement recommendations for wind farms 22.5.1.2 Requirement recommendations for wind farms using remote sensing 22.5.1.3 Requirement recommendations for solar plants 22.5.2 Validation and verification recommendations 22.5.2.1 Statistical test and metric recommendations for the QC process 22.5.2.2 Solar specific validation recommendations 22.5.2.3 Performance control recommendations for hardware and manufacturer production guarantees 22.6 Recommendations for real-time measurements for power trading in electricity markets 22.6.1 Trading strategies with real-time measurements 22.6.2 Quality recommendations 22.6.3 Accuracy and resolution requirement recommendations 23 End note A Clarification questions for forecast solutions Ask questions to the vendors Typical questions for Part 1 Typical questions for Part 2 B Typical RFI questions prior to or in an RFP C Application examples for use of probabilistic uncertainty forecasts C.1 Example of the graphical visualization of an operational dynamic reserve prediction system at a system operator C.2 High-speed shut down warning system D Metadata checklist E Sample forecast file structures E.1 XSD template example for forecasts and SCADA E.2 XSD SCADA template for exchange of real-time measurements F Standard statistical metrics F.1 BIAS F.2 MAE – mean absolute error F.3 RMSE – root mean squared error F.4 Correlation F.5 Standard deviation F.6 What makes a forecast ``good''? G Validation and verification code examples G.1 IEA wind task 36 and task 51 specific V&V code examples G.2 Code examples from related projects with relevance to recommendations H Examples of system operator met measurement requirements H.1 Examples of requirements in different jurisdictions H.2 Met measurement requirement example from California independent system operator in USA H.3 Met measurement requirement example from Irish system operator EIRGRID group H.4 Met measurement requirement example from Alberta electric system operator in Canada Bibliography Nomenclature Index Back Cover