دسترسی نامحدود
برای کاربرانی که ثبت نام کرده اند
برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید
در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید
برای کاربرانی که ثبت نام کرده اند
درصورت عدم همخوانی توضیحات با کتاب
از ساعت 7 صبح تا 10 شب
ویرایش:
نویسندگان: James Arbuckle
سری:
ناشر:
سال نشر: 2014
تعداد صفحات: 702
زبان: English
فرمت فایل : PDF (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود)
حجم فایل: 6 Mb
در صورت تبدیل فایل کتاب IBM AMOS v.23 به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.
توجه داشته باشید کتاب IBM AMOS نسخه 23 نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.
IBM® SPSS® Amos™ 23 User’s Guide......Page 1
2 Tutorial: Getting Started with Amos Graphics 7......Page 3
1 Estimating Variances and Covariances 23......Page 4
3 More Hypothesis Testing 59......Page 5
5 Unobserved Variables 81......Page 6
6 Exploratory Analysis 101......Page 7
8 Factor Analysis 139......Page 8
10 Simultaneous Analysis of Several Groups 161......Page 9
11 Felson and Bohrnstedt’s Girls and Boys 177......Page 10
13 Estimating and Testing Hypotheses about Means 211......Page 11
15 Factor Analysis with Structured Means 231......Page 12
16 Sörbom’s Alternative to Analysis of Covariance 243......Page 13
18 More about Missing Data 285......Page 14
21 Bootstrapping to Compare Estimation Methods 313......Page 15
22 Specification Search 321......Page 16
24 Multiple-Group Factor Analysis 365......Page 17
26 Bayesian Estimation 387......Page 18
28 Bayesian Estimation of Values Other Than Model Parameters 425......Page 19
32 Censored Data 477......Page 20
35 Mixture Modeling without Training Data 541......Page 21
37 Using Amos Graphics without Drawing a Path Diagram 579......Page 22
C ‘Measures of Fit 619......Page 23
Index 669......Page 25
1 Introduction......Page 27
Featured Methods......Page 28
About the Examples......Page 29
Other Sources of Information......Page 30
Acknowledgements......Page 31
Introduction......Page 33
About the Data......Page 34
Launching Amos Graphics......Page 35
Creating a New Model......Page 36
Specifying the Model and Drawing Variables......Page 37
Naming the Variables......Page 38
Drawing Arrows......Page 39
Constraining a Parameter......Page 40
To Delete an Object......Page 41
Setting Up Optional Output......Page 42
To View Text Output......Page 44
To View Graphics Output......Page 45
Printing the Path Diagram......Page 46
Copying Text Output......Page 47
About the Data......Page 49
Bringing In the Data......Page 50
Specifying the Model......Page 51
Naming the Variables......Page 52
Establishing Covariances......Page 53
Viewing Graphics Output......Page 54
Viewing Text Output......Page 55
Calculating Standardized Estimates......Page 59
Viewing Correlation Estimates as Text Output......Page 60
Distribution Assumptions for Amos Models......Page 61
Modeling in VB.NET......Page 62
Modeling in C#......Page 65
Other Program Development Tools......Page 66
Parameters Constraints......Page 67
Constraining Variances......Page 68
Specifying Equal Parameters......Page 69
Constraining Covariances......Page 70
Moving and Formatting Objects......Page 71
Data Input......Page 72
Viewing Text Output......Page 73
Optional Output......Page 74
Covariance Matrix Estimates......Page 75
Labeling Output......Page 77
Hypothesis Testing......Page 78
Displaying Chi-Square Statistics on the Path Diagram......Page 79
Modeling in VB.NET......Page 81
Timing Is Everything......Page 83
Bringing In the Data......Page 85
Specifying the Model......Page 86
Viewing Text Output......Page 88
Viewing Graphics Output......Page 89
Modeling in VB.NET......Page 91
About the Data......Page 93
Analysis of the Data......Page 94
Specifying the Model......Page 95
Fixing Regression Weights......Page 96
Viewing the Text Output......Page 98
Viewing Graphics Output......Page 100
Viewing Additional Text Output......Page 101
Assumptions about Correlations among Exogenous Variables......Page 103
Equation Format for the AStructure Method......Page 104
About the Data......Page 107
Measurement Model......Page 109
Structural Model......Page 110
Specifying the Model......Page 111
Changing the Orientation of the Drawing Area......Page 112
Creating the Path Diagram......Page 113
Duplicating Measurement Models......Page 114
Results for Model A......Page 116
Model B......Page 119
Results for Model B......Page 121
Testing Model B against Model A......Page 123
Model A......Page 125
Model B......Page 126
About the Data......Page 127
Specifying the Model......Page 128
Identification......Page 129
Dealing with Rejection......Page 130
Modification Indices......Page 131
Model B for the Wheaton Data......Page 133
Text Output......Page 134
Graphics Output for Model B......Page 136
Improving a Model by Adding New Constraints......Page 137
Model C for the Wheaton Data......Page 141
Testing Model C......Page 142
Multiple Models in a Single Analysis......Page 143
Viewing Fit Statistics for All Four Models......Page 147
Obtaining Optional Output......Page 148
Obtaining Tables of Indirect, Direct, and Total Effects......Page 150
Model A......Page 151
Model B......Page 152
Model C......Page 153
Fitting Multiple Models......Page 154
About the Data......Page 157
Felson and Bohrnstedt’s Model......Page 158
Text Output......Page 159
Obtaining Squared Multiple Correlations......Page 161
Graphics Output......Page 162
Stability Index......Page 163
Modeling in VB.NET......Page 164
About the Data......Page 165
A Common Factor Model......Page 166
Identification......Page 167
Drawing the Model......Page 168
Results of the Analysis......Page 169
Obtaining Standardized Estimates......Page 170
Viewing Standardized Estimates......Page 171
Modeling in VB.NET......Page 172
Analysis of Covariance and Its Alternative......Page 173
About the Data......Page 174
Model A for the Olsson Data......Page 175
Identification......Page 176
Requesting Modification Indices......Page 177
Model B for the Olsson Data......Page 178
Results for Model B......Page 179
Model C for the Olsson Data......Page 181
Fitting All Models At Once......Page 182
Model B......Page 183
Model C......Page 184
Fitting Multiple Models......Page 185
Analysis of Several Groups......Page 187
Model A......Page 188
Specifying Model A......Page 189
Text Output......Page 194
Graphics Output......Page 195
Model B......Page 196
Text Output......Page 198
Model A......Page 199
Model B......Page 200
Multiple Model Input......Page 201
About the Data......Page 203
Specifying a Figure Caption......Page 204
Text Output for Model A......Page 207
Graphics Output for Model A......Page 209
Model B for Girls and Boys......Page 210
Text Output......Page 212
Graphics Output......Page 215
Model C for Girls and Boys......Page 216
Results for Model C......Page 219
Model A......Page 220
Model C......Page 221
Fitting Multiple Models......Page 222
About the Data......Page 223
Naming the Groups......Page 224
Specifying the Data......Page 225
Text Output......Page 226
Graphics Output......Page 227
Model B for the Holzinger and Swineford Boys and Girls......Page 228
Text Output......Page 230
Graphics Output......Page 231
Model A......Page 234
Model B......Page 235
Means and Intercept Modeling......Page 237
Mean Structure Modeling in Amos Graphics......Page 238
Text Output......Page 240
Model B for Young and Old Subjects......Page 242
Multiple Model Input......Page 244
Model A......Page 245
Model B......Page 246
Fitting Multiple Models......Page 247
Assumptions Made by Amos......Page 249
Specifying the Model......Page 250
Text Output......Page 251
Modeling in VB.NET......Page 253
Factor Means......Page 257
Specifying the Model......Page 258
Understanding the Cross-Group Constraints......Page 260
Graphics Output......Page 261
Model B for Boys and Girls......Page 263
Comparing Models A and B......Page 265
Model A......Page 266
Model B......Page 267
Fitting Multiple Models......Page 268
Assumptions......Page 269
About the Data......Page 270
Specifying the Model......Page 271
Text Output......Page 273
Model B......Page 275
Results for Model B......Page 277
Model C......Page 278
Results for Model C......Page 279
Model D......Page 280
Results for Model D......Page 281
Fitting Models A Through E in a Single Analysis......Page 283
Modeling in Amos Graphics......Page 284
Model Y......Page 285
Results for Model Y......Page 287
Model Z......Page 288
Results for Model Z......Page 289
Model A......Page 290
Model B......Page 291
Model C......Page 292
Model D......Page 293
Model E......Page 294
Fitting Multiple Models......Page 295
Models X, Y, and Z......Page 296
Incomplete Data......Page 297
About the Data......Page 298
Specifying the Model......Page 299
Saturated and Independence Models......Page 300
Text Output......Page 301
Modeling in VB.NET......Page 303
Fitting the Factor Model (Model A)......Page 304
Fitting the Saturated Model (Model B)......Page 305
Computing the Likelihood Ratio Chi-Square Statistic and P......Page 309
Performing All Steps with One Program......Page 310
Missing Data......Page 311
About the Data......Page 312
Model A......Page 313
Text Output......Page 315
Model B......Page 318
Output from Models A and B......Page 319
Model A......Page 320
Model B......Page 321
The Bootstrap Method......Page 323
A Factor Analysis Model......Page 324
Results of the Analysis......Page 325
Modeling in VB.NET......Page 329
Bootstrap Approach to Model Comparison......Page 331
Five Models......Page 332
Text Output......Page 336
Modeling in VB.NET......Page 338
Estimation Methods......Page 339
About the Model......Page 340
Text Output......Page 343
Modeling in VB.NET......Page 346
About the Model......Page 347
Specifying the Model......Page 348
Selecting Program Options......Page 350
Performing the Specification Search......Page 351
Viewing Generated Models......Page 352
Viewing Parameter Estimates for a Model......Page 353
Using BCC to Compare Models......Page 354
Viewing the Akaike Weights......Page 355
Using BIC to Compare Models......Page 356
Using Bayes Factors to Compare Models......Page 357
Rescaling the Bayes Factors......Page 359
Examining the Short List of Models......Page 360
Viewing a Scatterplot of Fit and Complexity......Page 361
Adjusting the Line Representing Constant Fit......Page 363
Viewing the Line Representing Constant C – df......Page 364
Adjusting the Line Representing Constant C – df......Page 365
Viewing the Best-Fit Graph for C......Page 366
Viewing the Best-Fit Graph for Other Fit Measures......Page 367
Viewing the Scree Plot for C......Page 368
Viewing the Scree Plot for Other Fit Measures......Page 370
Specification Search with Many Optional Arrows......Page 372
Setting Options to Their Defaults......Page 373
Performing the Specification Search......Page 374
Using BIC to Compare Models......Page 375
Limitations......Page 376
About the Model......Page 377
Opening the Specification Search Window......Page 378
Setting Options to Their Defaults......Page 379
Performing the Specification Search......Page 381
Using BCC to Compare Models......Page 382
Viewing the Short List of Models......Page 385
Heuristic Specification Search......Page 386
Performing a Stepwise Search......Page 387
Viewing the Scree Plot......Page 388
Limitations of Heuristic Specification Searches......Page 389
Model 24a: Modeling Without Means and Intercepts......Page 391
Opening the Multiple-Group Analysis Dialog Box......Page 392
Viewing the Parameter Subsets......Page 394
Viewing the Generated Models......Page 395
Fitting All the Models and Viewing the Output......Page 396
Customizing the Analysis......Page 397
Specifying the Model......Page 398
Removing Constraints......Page 399
Generating the Cross-Group Constraints......Page 400
Fitting the Models......Page 401
Viewing the Output......Page 402
About the Model......Page 405
Constraining the Latent Variable Means and Intercepts......Page 406
Generating Cross-Group Constraints......Page 407
Viewing the Text Output......Page 409
Examining the Modification Indices......Page 410
Modifying the Model and Repeating the Analysis......Page 411
Bayesian Estimation......Page 413
Selecting Priors......Page 415
Estimating the Covariance......Page 416
Results of Maximum Likelihood Analysis......Page 417
Bayesian Analysis......Page 418
Examining the Current Seed......Page 420
Changing the Current Seed......Page 421
Changing the Refresh Options......Page 423
Assessing Convergence......Page 424
Diagnostic Plots......Page 426
Bivariate Marginal Posterior Plots......Page 432
Changing the Confidence Level......Page 435
Learning More about Bayesian Estimation......Page 436
More about Bayesian Estimation......Page 437
About the Data......Page 438
Fitting a Model by Maximum Likelihood......Page 439
Changing the Number of Burn-In Observations......Page 440
The Wheaton Data Revisited......Page 451
Indirect Effects......Page 452
Estimating Indirect Effects......Page 453
Bayesian Analysis of Model C......Page 455
Additional Estimands......Page 456
Inferences about Indirect Effects......Page 459
The Stability of Alienation Model......Page 465
Numeric Custom Estimands......Page 471
Dragging and Dropping......Page 475
Defining a Dichotomous Estimand......Page 485
About the Example......Page 489
Performing Multiple Data Imputation Using Amos Graphics......Page 490
Analyzing the Imputed Data Files Using SPSS Statistics......Page 497
Step 2: Ten Separate Analyses......Page 498
Step 3: Combining Results of Multiply Imputed Data Files......Page 499
Further Reading......Page 501
About the Data......Page 503
Analyzing the Data......Page 505
Performing a Regression Analysis......Page 506
Posterior Predictive Distributions......Page 509
Imputation......Page 512
General Inequality Constraints on Data Values......Page 516
About the Data......Page 517
Specifying the Data File......Page 519
Recoding the Data within Amos......Page 520
Specifying the Model......Page 528
Fitting the Model......Page 529
MCMC Diagnostics......Page 532
Posterior Predictive Distributions......Page 534
Posterior Predictive Distributions for Latent Variables......Page 539
Imputation......Page 544
About the Data......Page 549
Performing the Analysis......Page 552
Specifying the Data File......Page 554
Specifying the Model......Page 558
Fitting the Model......Page 560
Classifying Individual Cases......Page 563
Latent Structure Analysis......Page 565
About the Data......Page 567
Performing the Analysis......Page 568
Specifying the Data File......Page 570
Specifying the Model......Page 573
Constraining the Parameters......Page 574
Fitting the Model......Page 576
Classifying Individual Cases......Page 579
Latent Structure Analysis......Page 581
Label Switching......Page 582
First Dataset......Page 585
Second Dataset......Page 587
The Group Variable in the Dataset......Page 588
Performing the Analysis......Page 589
Specifying the Data File......Page 591
Specifying the Model......Page 594
Fitting the Model......Page 595
Classifying Individual Cases......Page 600
Improving Parameter Estimates......Page 601
Prior Distribution of Group Proportions......Page 603
Label Switching......Page 604
Introduction......Page 605
Creating a Plugin to Specify the Model......Page 606
Controlling Undo Capability......Page 611
Compiling and Saving the Plugin......Page 613
Using the Plugin......Page 614
Defining Program Variables that Correspond to Model Variables......Page 616
The Wheaton Data Revisited......Page 619
Estimating an Indirect Effect......Page 620
Estimating the Indirect Effect without Naming Parameters......Page 628
A Markov Model......Page 631
A Notation......Page 639
B Discrepancy Functions......Page 641
C Measures of Fit......Page 645
DF......Page 646
P......Page 647
CMIN/DF......Page 649
NCP......Page 650
RMSEA......Page 651
AIC......Page 653
BIC......Page 654
ECVI......Page 655
Comparisons to a Baseline Model......Page 656
NFI......Page 657
RFI......Page 658
TLI......Page 659
Parsimony Adjusted Measures......Page 660
GFI......Page 661
AGFI......Page 662
HOELTER......Page 663
RMR......Page 664
Selected List of Fit Measures......Page 665
D Numeric Diagnosis of Non-Identifiability......Page 667
E Using Fit Measures to Rank Models......Page 669
F Baseline Models for Descriptive Fit Measures......Page 673
Zero-Based Rescaling......Page 675
Akaike Weights and Bayes Factors (Sum = 1)......Page 676
Akaike Weights and Bayes Factors (Max = 1)......Page 677
Notices......Page 679
Trademarks......Page 681
Bibliography......Page 683
Index......Page 695