دسترسی نامحدود
برای کاربرانی که ثبت نام کرده اند
برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید
در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید
برای کاربرانی که ثبت نام کرده اند
درصورت عدم همخوانی توضیحات با کتاب
از ساعت 7 صبح تا 10 شب
ویرایش: نویسندگان: Prasad S., Chanussot J (ed.) سری: ACVPR ISBN (شابک) : 9783030386160, 9783030386177 ناشر: Springer سال نشر: 2020 تعداد صفحات: 464 زبان: English فرمت فایل : PDF (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود) حجم فایل: 13 مگابایت
در صورت ایرانی بودن نویسنده امکان دانلود وجود ندارد و مبلغ عودت داده خواهد شد
در صورت تبدیل فایل کتاب Hyperspectral image analysis به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.
توجه داشته باشید کتاب تجزیه و تحلیل تصویر فراطیفی نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.
این کتاب با تمرکز بر روندهای نوظهور در یادگیری ماشین و پردازش/درک تصویر، وضعیت هنر را در رویکردهای الگوریتمی بررسی میکند که به چالشهای عملی که با وظایف تجزیه و تحلیل تصویر ابرطیفی به وجود میآیند، میپردازد. این پیشرفتها را در یادگیری عمیق، یادگیری چند نمونهای، یادگیری مبتنی بر نمایش پراکنده، مدلهای چند بعدی کمبعد، تشخیص تغییرات غیرعادی، تشخیص هدف، همجوشی حسگر و وضوح فوقالعاده برای درک تصویر قوی چند طیفی و فراطیفی ارائه میکند. این پژوهش از کارشناسان برجسته بین المللی که مشارکت های اساسی در این زمینه ها داشته اند ارائه می کند. این کتاب طیف متنوعی از کاربردهای تصاویر چندطیفی/فوق طیفی را در زمینه این الگوریتمها، از جمله سنجش از دور، تشخیص چهره و پزشکی زیستی پوشش میدهد. این کتاب به ویژه برای دانشجویان فارغ التحصیل و محققانی که دوره های پیشرفته ای را در حوزه های تجزیه و تحلیل تصویر، یادگیری ماشینی و سنجش از دور با تصاویر نوری چند کانالی می گذرانند (یا در حال کار در آنها هستند) مفید خواهد بود. محققان و متخصصان دانشگاه و صنعت که در زمینه هایی مانند مهندسی برق، مهندسی عمران و محیط زیست، علوم زمین و پردازش تصویر زیست پزشکی کار می کنند، که با داده های نوری چند کاناله کار می کنند، این کتاب را مفید خواهند یافت.
This book reviews the state of the art in algorithmic approaches addressing the practical challenges that arise with hyperspectral image analysis tasks, with a focus on emerging trends in machine learning and image processing/understanding. It presents advances in deep learning, multiple instance learning, sparse representation based learning, low-dimensional manifold models, anomalous change detection, target recognition, sensor fusion and super-resolution for robust multispectral and hyperspectral image understanding. It presents research from leading international experts who have made foundational contributions in these areas. The book covers a diverse array of applications of multispectral/hyperspectral imagery in the context of these algorithms, including remote sensing, face recognition and biomedicine. This book would be particularly beneficial to graduate students and researchers who are taking advanced courses in (or are working in) the areas of image analysis, machine learning and remote sensing with multi-channel optical imagery. Researchers and professionals in academia and industry working in areas such as electrical engineering, civil and environmental engineering, geosciences and biomedical image processing, who work with multi-channel optical data will find this book useful.
Contents......Page 6
1 Introduction......Page 8
2 Machine Learning Methods for Spatial and Temporal Parameter Estimation......Page 12
2.1.2 Data and Model Challenges......Page 13
2.1.3 Goals and Outline......Page 16
2.2 Gap Filling and Multi-sensor Fusion......Page 17
2.2.2 LMC-GP......Page 18
2.2.4 Results......Page 21
2.3 Distribution Regression for Multiscale Estimation......Page 24
2.3.1 Kernel Distribution Regression......Page 26
2.3.2 Data and Setup......Page 29
2.3.3 Results......Page 31
2.4 Global Parameter Estimation in the Cloud......Page 32
2.4.1 Data and Setup......Page 33
2.4.2 Results......Page 35
2.5 Conclusions......Page 37
References......Page 38
3.1 Introduction......Page 43
3.1.1 History of Deep Learning in Computer Vision......Page 45
3.1.2 History of Deep Learning for HSI Tasks......Page 46
3.1.3 Challenges......Page 47
3.2.1 Perceptron......Page 48
3.2.2 Multi-layer Neural Networks......Page 50
3.2.3 Learning and Gradient Computation......Page 53
3.3.1 Autoencoders......Page 57
3.3.3 Recurrent Neural Networks......Page 59
3.3.4 Long Short-Term Memory......Page 61
3.4 Convolutional Neural Networks......Page 63
3.4.1 Building Blocks of CNNs......Page 64
3.4.2 CNN Flavors for HSI......Page 66
3.5 Software Tools for Deep Learning......Page 69
References......Page 70
4 Deep Learning for Hyperspectral Image Analysis, Part II: Applications to Remote Sensing and Biomedicine......Page 75
4.1 Introduction......Page 76
4.2.1 Remote Sensing Case Study: Urban Land Cover Classification......Page 78
4.2.2 Biomedical Application: Tissue Histology......Page 79
4.3.1 Practical Considerations......Page 82
4.3.2 Related Developments in the Community......Page 83
4.4.1 CNNs......Page 86
4.4.2 RNNs......Page 88
4.4.3 CRNNs......Page 89
4.5.1 Remote Sensing Results......Page 90
4.5.2 Biomedical Results......Page 101
4.6 Design Choices and Hyperparameters......Page 108
4.6.2 Pooling Layer Hyperparameters......Page 109
4.6.3 Training Hyperparameters......Page 110
4.6.4 General Model Hyperparameters......Page 112
4.6.5 Regularization Hyperparameters......Page 113
4.7 Concluding Remarks......Page 115
References......Page 116
5.1 Deep Learning—Challenges presented by Hyperspectral Imagery......Page 122
5.2 Robust Learning with Limited Labeled Data......Page 124
5.2.1 Unsupervised Feature Learning......Page 125
5.2.2 Semi-supervised learning......Page 127
5.2.3 Active learning......Page 129
5.3.1 Transfer Learning and Domain Adaptation......Page 132
5.3.2 Transferring Knowledge—Beyond Classification......Page 138
5.4 Data Augmentation......Page 139
References......Page 141
6.1 Motivating Examples for Multiple Instance Learning in Hyperspectral Analysis......Page 146
6.2 Introduction to Multiple Instance Classification......Page 150
6.2.2 Axis-Parallel Rectangles, Diverse Density, and Other General MIL Approaches......Page 151
6.3 Multiple Instance Learning Approaches for Hyperspectral Target Characterization and Sub-pixel Target Detection......Page 154
6.3.1 Extended Function of Multiple Instances......Page 155
6.3.2 Multiple Instance Spectral Matched Filter and Multiple Instance Adaptive Coherence/Cosine Detector......Page 157
6.3.3 Multiple Instance Hybrid Estimator......Page 159
6.3.4 Multiple Instance Learning for Multiple Diverse Hyperspectral Target Characterizations......Page 161
6.3.5 Experimental Results for MIL in Hyperspectral Target Detection......Page 163
6.4.1 Multiple Instance Choquet Integral Classifier Fusion......Page 171
6.4.2 Multiple Instance Regression......Page 174
6.4.3 Multiple Instance Multi-resolution and Multi-modal Fusion......Page 178
6.5 Summary......Page 186
References......Page 187
7 Supervised, Semi-supervised, and Unsupervised Learning for Hyperspectral Regression......Page 191
7.1 Introduction to Hyperspectral Regression......Page 192
7.2 Fundamentals of Hyperspectral Regression......Page 195
7.3 Hyperspectral Regression at the Data Level......Page 197
7.3.2 Dataset Shift......Page 198
7.3.3 Dataset Splitting......Page 200
7.4 Hyperspectral Regression at the Feature Level......Page 203
7.4.1 Dimensionality Reduction......Page 204
7.4.2 Clustering......Page 205
7.4.3 Feature Engineering and Feature Selection......Page 208
7.5.1 Supervised Learning Models......Page 209
7.5.2 Semi-supervised Learning for Regression......Page 221
7.5.3 Model Selection, Optimization, and Evaluation......Page 224
7.6 Summary and Trends in Hyperspectral Regression......Page 227
7.6.2 Trends at the Feature Level: Domain Knowledge......Page 228
References......Page 229
8.1 Introduction......Page 237
8.2 Sparse Representation-Based HSI Classification......Page 238
8.3 Advanced Models of Sparse Representation for Hyperspectral Image Classification......Page 240
8.4.1 Model and Algorithm......Page 247
8.4.2 Experimental Results and Discussion......Page 250
References......Page 259
9.1 Introduction......Page 262
9.2 Learning from Multiple Kernels......Page 264
9.2.1 General MKL......Page 265
9.2.2 Strategies for MKL......Page 267
9.3.1 Subspace MKL......Page 268
9.3.2 Nonlinear MKL......Page 269
9.3.3 Sparsity-Constrained MKL......Page 271
9.3.4 Ensemble MKL......Page 274
9.3.5 Heterogeneous Feature Fusion with MKL......Page 275
9.3.6 MKL with Superpixel......Page 277
9.4.1 Hyperspectral Data Sets......Page 278
9.4.2 Experimental Settings and Evaluation......Page 279
9.4.3 Spectral Classification......Page 284
9.4.4 Spatial–Spectral Classification......Page 286
9.4.5 Classification with Heterogeneous Features......Page 288
9.4.6 Superpixel-Based Classification......Page 290
9.5 Conclusion......Page 292
References......Page 293
10.1 Introduction......Page 297
10.2 Low Dimensional Manifold Model......Page 298
10.2.2 Model Formulation and Calculating the Manifold Dimension......Page 299
10.3 Two Numerical Approaches of Solving the LDMM Model......Page 302
10.3.1 The First Approach......Page 303
10.3.2 The Second Approach......Page 305
10.3.3 A Comparison of the Two Approaches......Page 311
10.4.1 Experimental Setup......Page 313
10.4.2 Reconstruction from Noise-Free Subsample......Page 314
10.4.3 Reconstruction from Noisy Subsample......Page 316
10.5 Conclusion......Page 317
References......Page 318
11.1 Introduction......Page 320
11.2.1 Hyperspectral Imaging Techniques......Page 322
11.2.2 Spectral Face Recognition......Page 324
11.2.3 Spectral Band Selection......Page 325
11.3 Sparsity......Page 326
11.4.1 Network Pruning......Page 328
11.4.3 Decomposition......Page 329
11.7 Convolutional Neural Network......Page 330
11.7.1 Convolutional Layer......Page 331
11.7.3 Fully Connected Layer......Page 332
11.7.5 Activation Function: ReLU......Page 333
11.7.6 VGG-19 Architecture......Page 334
11.8.1 Proposed Structured Sparsity Learning for Generic Structures......Page 335
11.8.3 Face Recognition Loss Function......Page 336
11.8.4 Band Selection via Group Lasso......Page 337
11.9.2 Initializing Parameters of the Network......Page 338
11.9.4 Hyperspectral Face Datasets......Page 339
11.9.5 Parameter Sensitivity......Page 341
11.9.7 Band Selection......Page 342
11.9.8 Effectiveness of SSL......Page 343
11.9.9 Comparison......Page 345
11.10 Conclusion......Page 346
References......Page 347
12 Detection of Large-Scale and Anomalous Changes......Page 352
12.1 Introduction......Page 353
12.2 Change Detection: The Fundamentals......Page 354
12.3.1 Change Vector Analysis and Related Methods......Page 356
12.3.3 Transformation-Based Methods......Page 359
12.4 Approaches for Anomalous Change Detection......Page 362
12.4.1 Difference-Based Methods......Page 363
12.4.3 Joint-Distribution Methods......Page 365
12.4.4 Other Methods......Page 366
12.5 Operational Considerations......Page 367
12.6.1 Details on the Data......Page 368
12.6.2 Illustrative Examples......Page 370
References......Page 372
13 Recent Advances in Hyperspectral Unmixing Using Sparse Techniques and Deep Learning......Page 377
13.1.1 Spectral Unmixing......Page 378
13.1.2 Sparse Unmixing......Page 379
13.1.3 Deep Learning for Spectral Unmixing......Page 380
13.1.4 Contributions of This Chapter......Page 381
13.2.1 Sparse Versus Spectral Unmixing......Page 382
13.2.3 Total Variation Regularization......Page 383
13.2.5 Double Reweighted Regularization......Page 384
13.2.6 Spectral–Spatial Weighted Regularization......Page 385
13.3 Deep Learning for Hyperspectral Unmixing......Page 386
13.3.2 Deep Auto-Encoder Network......Page 387
13.3.3 Stacked Auto-Encoders for Initialization......Page 388
13.3.4 Variational Auto-Encoders for Unmixing......Page 389
13.4 Experiments and Analysis: Sparse Unmixing......Page 392
13.4.2 Real Hyperspectral Data......Page 393
13.5 Experiments and Analysis: Deep Learning......Page 396
13.5.1 Mangrove Dataset......Page 398
13.5.2 Samson Dataset......Page 399
13.6 Conclusions and Future Work......Page 400
References......Page 403
14 Hyperspectral–Multispectral Image Fusion Enhancement Based on Deep Learning......Page 406
14.1 Introduction......Page 407
14.2.1 HSI Pan-sharpening......Page 408
14.2.2 HSI Super-Resolution......Page 409
14.2.4 Deep Learning Based Image Enhancement......Page 410
14.3.1 Spectral–Spatial Deep Feature Learning......Page 413
14.3.2 HSI-MSI Fusion......Page 414
14.3.3 Experimental Results......Page 416
14.4 Conclusions and Discussions......Page 427
References......Page 428
15 Automatic Target Detection for Sparse Hyperspectral Images......Page 433
15.1.2 Hyperspectral Target Detection: Concept and Challenges......Page 434
15.1.3 Goals and Outline......Page 437
15.1.4 Summary of Main Notations......Page 438
15.2 Related Works......Page 439
15.3 Main Contribution......Page 440
15.3.1 Recovering a Low-Rank Background Matrix and a Sparse Target Matrix by Convex Optimization......Page 441
15.4 Experiments and Analysis......Page 445
15.4.1 Construction of the Target Dictionary At......Page 448
15.4.2 Target Detection Evaluation......Page 450
15.5 Conclusion and Future Work......Page 455
References......Page 456
Index......Page 461