دسترسی نامحدود
برای کاربرانی که ثبت نام کرده اند
برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید
در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید
برای کاربرانی که ثبت نام کرده اند
درصورت عدم همخوانی توضیحات با کتاب
از ساعت 7 صبح تا 10 شب
ویرایش: [1 ed.]
نویسندگان: Jon Barwise. John Etchemendy
سری: Center for the Study of Language and Information - CSLI Lecture Notes 42
ISBN (شابک) : 1881526119, 1101191252
ناشر: CSLI Publications
سال نشر: 1994
تعداد صفحات: 266
زبان: English
فرمت فایل : DJVU (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود)
حجم فایل: 2 Mb
در صورت تبدیل فایل کتاب Hyperproof به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.
توجه داشته باشید کتاب ضد آب نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.
Hyperproof سیستمی برای یادگیری اصول استدلال تحلیلی و ساخت اثبات است که از یک متن و یک برنامه نرم افزار مکینتاش تشکیل شده است. برخلاف روشهای سنتی منطق مرتبه اول، Hyperproof اطلاعات گرافیکی و جملهای را با هم ترکیب میکند و مجموعهای از قوانین منطقی را برای ادغام این اشکال مختلف اطلاعات ارائه میکند. این استراتژی به دانش آموزان اجازه می دهد تا به جای ساختار نحوی جملات، بر محتوای اطلاعاتی اثبات ها تمرکز کنند. با استفاده از Hyperproof، دانش آموز یاد می گیرد که با استفاده از یک سیستم اثبات شهودی که مجموعه استاندارد قوانین جمله ای را برای ترکیب اطلاعات نمایش داده شده به صورت گرافیکی، اثبات می کند، اثبات هایی برای پیامد و عدم نتیجه بسازد. Hyperproof با سیستمهای اثباتی مختلف به سبک کسر طبیعی، از جمله سیستم مورد استفاده در زبان منطق درجه اول نویسنده، سازگار است.
Hyperproof is a system for learning the principles of analytical reasoning and proof construction, consisting of a text and a Macintosh software program. Unlike traditional treatments of first-order logic, Hyperproof combines graphical and sentential information, presenting a set of logical rules for integrating these different forms of information. This strategy allows students to focus on the information content of proofs, rather than the syntactic structure of sentences. Using Hyperproof the student learns to construct proofs of both consequence and nonconsequence using an intuitive proof system that extends the standard set of sentential rules to incorporate information represented graphically. Hyperproof is compatible with various natural-deduction-style proof systems, including the system used in the authors' Language of First-Order Logic.