دسترسی نامحدود
برای کاربرانی که ثبت نام کرده اند
برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید
در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید
برای کاربرانی که ثبت نام کرده اند
درصورت عدم همخوانی توضیحات با کتاب
از ساعت 7 صبح تا 10 شب
دسته بندی: شیمی فیزیکی ویرایش: 1 نویسندگان: Rolando Barbucci (ed.) سری: ISBN (شابک) : 8847011035, 9788847011045 ناشر: Springer سال نشر: 2009 تعداد صفحات: 201 زبان: English فرمت فایل : PDF (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود) حجم فایل: 12 مگابایت
کلمات کلیدی مربوط به کتاب هیدروژل ها: خواص بیولوژیکی و کاربردها: شیمی و صنایع شیمیایی، شیمی فیزیکی و کلوئیدی، پدیده های سطحی و سیستم های پراکنده
در صورت تبدیل فایل کتاب Hydrogels: Biological Properties and Applications به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.
توجه داشته باشید کتاب هیدروژل ها: خواص بیولوژیکی و کاربردها نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.
این کتاب حاصل یک کنفرانس بین المللی است که آخرین نتایج در این زمینه را گردآوری می کند. مطالعات روی Biohydrogels در دهههای گذشته تکامل سریع و تصاعدی داشته است. با شروع یکی از اولین کاربردهای هیدروژل ها در جراحی، پلی وینیل الکل متصل به فرمالدئید تحت نام تجاری Ivalon، ما از هیدروژل های PolyHema به عنوان مواد لنز تماسی، پلی یورتان های هیدروفیل (HPU)، هیدروژل های زیست تخریب پذیر برای جراحی های بازسازی و سیستم های تحویل دارویی عبور کردیم. و در نهایت اخیراً، یک دهه از عمرش، هیدروژل های شبکه حرارتی برگشت پذیر و گذرا. البته همه این دسته از هیدروژل ها همیشه و به طور مداوم مورد مطالعه قرار گرفته اند و عملکرد و زمینه کاربرد آنها را بهبود می بخشند. اخیراً بیشتر آنها به عنوان داربست برای سلول ها، حتی سلول های بنیادی، برای کاربردهای بازسازی (مهندسی بافت) مورد استفاده قرار گرفته اند. با این وجود هیدروژل ها مواد عجیبی هستند و هنوز مطالعات زیادی باید انجام شود تا رفتار آنها از دیدگاه مکانیکی، فیزیکوشیمیایی و بیولوژیکی به طور کامل درک شود.
This book is the result of an International conference gathering the most recents results in this field. The studies on Biohydrogels have had a rapid, exponential evolution in the last decades. Starting from one of the first applications of hydrogels in surgery, polyvinylalcohol crosslinked with formaldehyde under the trade name of Ivalon, we passed through PolyHema hydrogels as contact lens materials, hydrophilic polyurethanes (HPU), biodegradable hydrogels for both reconstructive surgery and pharmaceutical delivery systems, and finally more recently, one decade old, the thermoreversible and transient network hydrogels. Of course all these classes of hydrogels have been always and continuously studied, improving their performance and field of applications. Recently, most of them have been used as scaffolds for cells, even stem ones, for regenerative applications (tissue engineering). Nevertheless hydrogels are odd materials and many studies still have to be carried out to fully understand their behaviour from mechanical, physicochemical and biological point of view.
Cover Page ......Page 1
Front Matter ......Page 2
Title Page ......Page 3
Copyright Page ......Page 4
Preface......Page 5
Table of Contents ......Page 6
List of Contributors......Page 8
1 Introduction......Page 11
2 Materials......Page 12
2.2 Naturally derived materials......Page 13
3 Scaffold design......Page 14
4 Degradation......Page 15
6 Biological properties......Page 16
References......Page 18
1 Hydrogel classification and basic structure......Page 19
2.1 Dynamical mechanical analysis......Page 21
2.2 Hydrogel viscoelastic properties......Page 23
2.3 Stress-strain behavior......Page 24
3 Hydrogel swelling properties......Page 25
References......Page 28
Water and Surfaces: a Linkage Unexpectedly Profound......Page 31
References......Page 33
Polysaccharide Based Hydrogels for Biomedical Applications......Page 35
1.2 Amidic Carboxymethylcellulose hydrogel......Page 36
1.3 Amidic alginate hydrogel......Page 43
1.4.2 Guar gum based Hydrogel enriched with HA......Page 48
References......Page 50
1 Introduction......Page 52
2 Sphere templated polymers......Page 54
3 A biodegradable pHEMA hydrogel......Page 55
4 Degradation studies......Page 56
References......Page 59
1 Introduction......Page 61
2.2 Synthetic polymers used for hydrogel preparation......Page 62
2.4 Physical crosslinking......Page 63
2.6 Stereocomplexation......Page 64
2.8 Synthesis......Page 65
2.10 Gelation behavior......Page 67
2.11 Rheology......Page 69
3 Conclusions......Page 70
References......Page 71
1 Introduction......Page 74
2.2 Processing......Page 76
2.3 Characterization......Page 77
3 Results and discussion......Page 78
4 Conclusions......Page 83
References......Page 85
1 Introduction......Page 86
2 Poloxamers (Pluronicf®)......Page 87
3.1.1 Design of semi-interpenetrating networks and their characterization......Page 88
3.1.3 Cellattachment on poloxamine/collagen hydrogels......Page 90
3.2.1 Copolymerization of reactive poloxamine with quaternary ammonium methacrylates......Page 93
3.2.2 Methylation of poloxamine central block (quatemized poloxamine)......Page 94
3.3 The combined approach......Page 95
3.4 The degradable strategy......Page 96
4 Summary and perspectives......Page 99
References......Page 100
1 Biohydrogels as scaffolds for in vitro produced skin equivalents......Page 104
2 Biohydrogels for in situ human skin regeneration......Page 107
3 Biohydrogels as carriers of topical drugs facilitating wound healing and attenuating cutaneous inflammation......Page 109
4 Anti-oxidant properties of biohydrogels loaded with plant polyphenols......Page 110
5 Biohydrogels for drug delivery through the cutaneous barrier......Page 112
References......Page 113
1 Introduction......Page 117
2.3 Preparation of protein loaded Chitosan beads......Page 118
2.7 Evaluation of protein encapsulation efficiency......Page 119
3.2 Morphological observation......Page 120
3.4 Degradation of Chitosan-TPP beads......Page 122
4 Conclusions......Page 123
References......Page 125
1 Stimuli-sensitive hydrogels......Page 126
2 Materials and the swelling process......Page 128
3 Patterning......Page 129
Irradiation through a mask......Page 133
4.1 Microvalves......Page 139
4.2 Microchemostat valves......Page 141
5 Conclusions......Page 142
References......Page 143
1 Introduction......Page 146
2 The representative thermosensitive polymer, poly(N-isopropylacrylamide)......Page 147
3.1 PNIPAM microgel......Page 149
3.2 Hard core I PNIPAM gel shell particles......Page 150
3.3.2 Grafting-to method......Page 151
4 Colloid chemistry of thermo-sensitive microgels......Page 153
5 Products of living radical graft polymerization......Page 154
6.2 Magnetite nanoparticle-carrying thermo-sensitive particles......Page 156
6.4 Titania nanoparticle-carrying thermo-sensitive particles [25]......Page 158
References......Page 160
1 Introduction......Page 162
2.2.1 Synthesis of temperature sensitive PCL-PEG-PCL triblock copolymers......Page 164
2.2.3 Synthesis of pWtemperature-sensitive pentablock copolymers......Page 165
2.3.1 Polymer characterization......Page 167
2.3.5 Degradability evaluation of block copolymers and complex gel in vitro......Page 168
2.3.7 Insulin release in vivo in SD rats......Page 169
3.2 Sol-gel transition of block copolymer solutions......Page 170
3.3 Cytotoxicity evaluation of pentablock copolymers......Page 172
3.4.1 Effect of insulin on sol-gel transition diagram of pentablock copolymer......Page 173
3.4.2 Mechanism of insulin loading and release......Page 174
3.5.1 Degradability evaluation of block copolymer and complex gel in vitro......Page 176
3.5.2 Effect of the copolymer's degradation on the release of insulin......Page 177
3.6 Insulin release from triblock and complex gel in SD rats......Page 178
3.7 Storage stability of pentablock copolymers......Page 179
References......Page 180
1 Introduction......Page 183
2 Poly(N-isopropylacrylamide) grafted surfaces......Page 184
3 Green chromatography utilizing PIPAAm modified surfaces......Page 186
4 Modulation of cell adhesion and detachment properties using intelligent temperature-responsive surfaces......Page 188
5.1 PIPAAm grafted porous membrane for rapid cell sheet recovery......Page 193
5.2 Further rapid cell sheet recovery utilizing hydrophilic unit......Page 194
6.1 Thermal control of cell adhesion and detachment using temperature-responsive copolymer grafted surfaces......Page 195
6.2 Patterned dual temperature-responsive surfaces for recovery of continuous co-cul tured cell sheets......Page 196
6.3 Affinity control between cell integrins and RGDS ligands immobilized onto temperature-responsive cell culture surfaces......Page 197
References......Page 199