ورود به حساب

نام کاربری گذرواژه

گذرواژه را فراموش کردید؟ کلیک کنید

حساب کاربری ندارید؟ ساخت حساب

ساخت حساب کاربری

نام نام کاربری ایمیل شماره موبایل گذرواژه

برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید


09117307688
09117179751

در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید

دسترسی نامحدود

برای کاربرانی که ثبت نام کرده اند

ضمانت بازگشت وجه

درصورت عدم همخوانی توضیحات با کتاب

پشتیبانی

از ساعت 7 صبح تا 10 شب

دانلود کتاب Hydraulics of Levee Overtopping

دانلود کتاب هیدرولیک Levee Overtopping

Hydraulics of Levee Overtopping

مشخصات کتاب

Hydraulics of Levee Overtopping

ویرایش:  
نویسندگان: , , , ,   
سری:  
ISBN (شابک) : 9780429297557 
ناشر:  
سال نشر: 2020 
تعداد صفحات: 235 
زبان: English 
فرمت فایل : PDF (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود) 
حجم فایل: 11 مگابایت 

قیمت کتاب (تومان) : 41,000

در صورت ایرانی بودن نویسنده امکان دانلود وجود ندارد و مبلغ عودت داده خواهد شد



ثبت امتیاز به این کتاب

میانگین امتیاز به این کتاب :
       تعداد امتیاز دهندگان : 15


در صورت تبدیل فایل کتاب Hydraulics of Levee Overtopping به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.

توجه داشته باشید کتاب هیدرولیک Levee Overtopping نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.


توضیحاتی درمورد کتاب به خارجی



فهرست مطالب

Cover
Half Title
Series Page
Title Page
Copyright Page
Table of Contents
Preface
Variables
1 Introduction
	1.1 Background
	1.2 Contents of this Book
2 Surge Overflow, Wave Overtopping, and Combination
	2.1 Surge Overflow
		2.1.1 Surge Overflow Discharge
		2.1.2 Critical Water Depth and Velocity
		2.1.3 Shear Stress of Surge Overflow
	2.2 Wave Overtopping
		2.2.1 Processes of Overtopping
		2.2.2 Average Overtopping Discharge
		2.2.3 Distribution of Individual Overtopping Volumes
		2.2.4 Probability of Overtopping
	2.3 Combined Wave and Surge Overtopping
		2.3.1 Combined Wave and Surge Overtopping Discharge
		2.3.2 Distribution of Individual Overtopping Volumes under Negative Freeboard
		2.3.3 Hydraulic Parameters on the Landward-Side Slope of Levees
	2.4 Turbulent Overtopping
		2.4.1 Turbulence Measurement
		2.4.2 Turbulent Shear Stress
3 Three Strengthening Systems
	3.1 Background
	3.2 Three Innovative Levee-Overtopping Protection Methods
		3.2.1 High-Performance Turf Reinforcement Mats (HPTRM)
		3.2.2 Articulated Concrete Block (ACB) System
		3.2.3 Roller Compaction Concrete (RCC)
		3.2.4 Environmental Impact of Three Levee-Strengthening Systems
	3.3 Material Properties of the Three Strengthening Systems
		3.3.1 Testing Methods and Properties Results of HPTRM
		3.3.2 Testing Methods and Properties Results of ACB
		3.3.3 Testing Methods and Properties Results of RCC
4 Full-Scale Physical Models Testing of Levee Overtopping
	4.1 Full-Scale Test Model Setup
		4.1.1 Test Facility
		4.1.2 Levee Embankment Setup
		4.1.3 Wave Generator
		4.1.4 Pump System
	4.2 Installation of Levee-Strengthening Layers
		4.2.1 Installation of HPTRM Test Section and Maintenance
		4.2.2 Installation of ACB Test Section
		4.2.3 Installation of RCC Test Section
	4.3 Instrumentation and Data Collection
		4.3.1 Hydraulic Instrumentation
		4.3.2 Data Processing
	4.4 Testing Procedures
		4.4.1 HPTRM Test Section
		4.4.2 ACB Test Section
		4.4.3 RCC Test Section
	4.5 Erosion Check Method
		4.5.1 HPTRM Test Section
		4.5.2 ACB Test Section
		4.5.3 RCC Test Section
	4.6 Scale, Model, and Measurement Effects
5 Testing of Erosion Function Apparatus
	5.1 Erosion Function Apparatus (EFA)
	5.2 EFA Tests
	5.3 Test Results
6 Hydraulic Parameters of Combined Wave and Surge Overtopping
	6.1 Distribution of Incident Wave
	6.2 Wave Overtopping Patterns
	6.3 Hydraulic Parameters of Surge-Only Overflow
		6.3.1 Surge-Only Overflow Discharge
		6.3.2 Flow Thickness on Landward-Side Slope
		6.3.3 Average Flow Velocity on Landward-Side Slope
	6.4 Combined Wave and Surge Overtopping Discharge
		6.4.1 Combined Wave and Surge Overtopping Discharge
		6.4.2 Distribution of Individual Overtopping Volumes
		6.4.3 Distribution of Instantaneous Overtopping Discharge
	6.5 Hydraulic Parameters of Landward-Side Slope
		6.5.1 Average Flow Thickness and Flow Velocity on Landward-Side Slope
		6.5.2 Characteristic Wave Heights on Landward-Side Slope
		6.5.3 Estimation of H[sub(rms)] on Landward-Side Slope
		6.5.4 Estimation of Wave Front Velocity on the Landward-Side Slope
	6.6 Standardized Analysis of Hydraulic Parameters of Combined and Surge Overtopping
		6.6.1 Surge-Only Overflow and Combined Wave and Surge Overtopping Discharge
		6.6.2 Average Flow Thickness on Landward-Side Slope
		6.6.3 Average Flow Velocity on Landward-Side Slope
	6.7 Shear Stress
		6.7.1 Shear Stress Calculation
		6.7.2 Shear Stress Analysis
		6.7.3 Estimation of Shear Stresses on Landward-Side Slope
7 Turbulent Analysis
	7.1 Measurement Setup
		7.1.1 Model Setup and Instrumentation
		7.1.2 Data Collection and Initial Analyses
	7.2 Overtopping Discharge
	7.3 Turbulent Intensity of Overtopping Flow
		7.3.1 Turbulence Velocity Fluctuations
		7.3.2 New Formula for Turbulent Intensity on the Crest and the Land-Side Slope
	7.4 Turbulent Shear Stress
		7.4.1 Log Profile Method
		7.4.2 Reynolds Stress and Turbulent Kinetic Energy Methods
		7.4.3 Nadal and Hughes’ Method
		7.4.4 New Formulas for Shear Stress Estimation on the Crest and On the Land-Side Slope
8 Hydraulic Erosion on Landward-Side Slope of Levees and Conceptual Model of Soil Loss from Levee Surface
	8.1 Hydraulic Erosion on Landward-Side Slope of Levees
		8.1.1 Hydraulic Erosion on the RCC Test Section
		8.1.2 Hydraulic Erosion on the ACB Test Section
		8.1.3 Hydraulic Erosion on the HPTRM Test Section
	8.2 Conceptual Model of Soil Loss from Levee Surface
		8.2.1 Definition
		8.2.2 Soil Erodibility of HPTRM
		8.2.3 Conceptual Model of Soil Loss from Levee Surface
		8.2.4 Failure Modes of HPTRM-Strengthened Levee
9 Numerical Study of Combined Wave Overtopping and Storm Surge Overflow of Strengthened Levee
	9.1 Princeton Ocean Model (POM) Method
		9.1.1 Numerical Methodology
		9.1.2 Sensitivity Analyses
		9.1.3 Model Calibration
		9.1.4 Storm Surge Overflow Discharge
		9.1.5 Combined Wave and Storm Surge Overtopping Discharge
		9.1.6 Flow Parameters on the HPTRM-Strengthened Levee Slope
		9.1.7 Average Flow Thickness at the Landward-Side Slope Toe
		9.1.8 Time Series Upcrossing Analysis
		9.1.9 Estimation of Wavefront Velocity on the Landward-Side Slope
	9.2 Smoothed Particle Hydrodynamic (SPH) Method
		9.2.1 Numerical Methodology
		9.2.2 Numerical Wave Generator
		9.2.3 Sensitivity Analysis
		9.2.4 Average Overtopping Discharge for Combined Wave and Surge Overtopping
		9.2.5 Flow Parameters on the Landward Levee Slope
10 Numerical Study of Turbulence Overtopping and Erosion
	10.1 Numerical Methodology
		10.1.1 Governing Equations
		10.1.2 Boundary Condition
		10.1.3 Model Setup
		10.1.4 Numerical Scheme
		10.1.5 Random Wave Generation
	10.2 Model Calibration
	10.3 Storm Surge Overflow Erosion
	10.4 Combined Wave/Surge Overtopping Shear Stress, Turbulence, and Erosion
		10.4.1 Turbulent Shear Stress
		10.4.2 Turbulent Kinetic Energy
		10.4.3 Prediction of Erosion Rate at the Toe of Landward-Side Slope
	10.5 Erodibility and Failure of HPTRM-Strengthened Levee under Different Overtopping Conditions
		10.5.1 Turf-Element Model and HPTRM-Element Model
		10.5.2 Characterization of HPTRM-Element Model
		10.5.3 Failure Process of HPTRM-Strengthened Levee against Steady Overtopping
		10.5.4 Failure Process of HPTRM-Strengthened Levee against Combined Overtopping
		10.5.5 Discussion on Validation of the Proposed Analytic Equation
		10.5.6 Discussion on Linear Relationship for HPTRM-Strengthened Clay
References
Index




نظرات کاربران