دسترسی نامحدود
برای کاربرانی که ثبت نام کرده اند
برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید
در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید
برای کاربرانی که ثبت نام کرده اند
درصورت عدم همخوانی توضیحات با کتاب
از ساعت 7 صبح تا 10 شب
ویرایش: [1 ed.]
نویسندگان: Andrea Vacca. Germano Franzoni
سری:
ISBN (شابک) : 1119569117, 9781119569114
ناشر: Wiley
سال نشر: 2021
تعداد صفحات: 704
[707]
زبان: English
فرمت فایل : PDF (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود)
حجم فایل: 25 Mb
در صورت تبدیل فایل کتاب Hydraulic Fluid Power: Fundamentals, Applications, and Circuit Design به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.
توجه داشته باشید کتاب قدرت سیال هیدرولیک: مبانی ، برنامه ها و طراحی مدار نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.
درباره فناوری هیدرولیک در طراحی سیستم های هیدرولیک با این منبع جامع
سیالات هیدرولیکبیشتر بیاموزید رویکردی بدیع به آموزش فناوری هیدرولیک را در اختیار خوانندگان قرار می دهد که بر طراحی سیستم های هیدرولیک کامل تمرکز دارد. نویسندگان و محققان برجسته آندریا واکا و آلمانو فرانزونی با توصیف اصول اساسی هیدرولیک و اجزای فیزیکی اساسی سیستم های هیدرولیک شروع می کنند. آنها در ادامه خوانندگان را از طریق کاربردی ترین و مفیدترین مفاهیم سیستم برای کنترل عملکردهای هیدرولیک در سیستم های مدرن و پیشرفته آشنا می کنند.
که به سبکی قابل دسترس و در دسترس نوشته شده است، مفاهیم کتاب طبقه بندی شده است. ، تجزیه و تحلیل، ارائه و مقایسه در سطح سیستم. این کتاب همچنین ابزارهای اساسی و پیشرفته مورد نیاز برای درک اینکه چگونه طراحی مدار هیدرولیک بر عملکرد تجهیزاتی که در آن یافت می شود، با تمرکز بر عملکرد انرژی و ویژگی های کنترل هر معماری طراحی، تأثیر می گذارد، در اختیار خوانندگان قرار می دهد. خوانندگان همچنین یاد خواهند گرفت که چگونه بهترین راه حل طراحی را برای هر برنامه ای انتخاب کنند.
خوانندگان Hydraulic Fluid Power از موارد زیر بهره مند خواهند شد:
Hydraulic Fluid Power برای دانشجویان کارشناسی و کارشناسی ارشد مهندسی مکانیک، کشاورزی و هوافضا و همچنین مهندسین طراحی اجزای هیدرولیک، ماشین آلات متحرک یا سیستمهای صنعتی مناسب است.
LEARN MORE ABOUT HYDRAULIC TECHNOLOGY IN HYDRAULIC SYSTEMS DESIGN WITH THIS COMPREHENSIVE RESOURCE
Hydraulic Fluid Power provides readers with an original approach to hydraulic technology education that focuses on the design of complete hydraulic systems. Accomplished authors and researchers Andrea Vacca and Germano Franzoni begin by describing the foundational principles of hydraulics and the basic physical components of hydraulics systems. They go on to walk readers through the most practical and useful system concepts for controlling hydraulic functions in modern, state-of-the-art systems.
Written in an approachable and accessible style, the book’s concepts are classified, analyzed, presented, and compared on a system level. The book also provides readers with the basic and advanced tools required to understand how hydraulic circuit design affects the operation of the equipment in which it’s found, focusing on the energy performance and control features of each design architecture. Readers will also learn how to choose the best design solution for any application.
Readers of Hydraulic Fluid Power will benefit from:
Hydraulic Fluid Power is perfect for undergraduate and graduate students of mechanical, agricultural, and aerospace engineering, as well as engineers designing hydraulic components, mobile machineries, or industrial systems.
Cover Title Page Copyright Contents Preface Acknowledgments Part I Fundamental Principles Objectives Chapter 1 Introduction to Hydraulic Control Technology 1.1 Historical Perspective 1.2 Fluid Power Symbology and Its Evolution 1.3 Common ISO Symbols Problems Chapter 2 Hydraulic Fluids 2.1 Ideal vs. Actual Hydraulic Fluids 2.2 Classification of Hydraulic Fluids 2.2.1 Mineral Oils (H) 2.2.2 Fire‐Resistant Fluids (HF) 2.2.3 Synthetic Fluids (HS) 2.2.4 Environmentally Friendly Fluids 2.2.5 Water Hydraulics 2.2.6 Comparisons Between Hydraulic Fluids 2.3 Physical Properties of Hydraulic Fluids 2.4 Fluid Compressibility: Bulk Modulus 2.5 Fluid Density 2.6 Fluid Viscosity 2.6.1 Viscosity as a Function of Temperature 2.6.2 Viscosity as a Function of Pressure 2.7 Entrained Air, Gas Solubility, and Cavitation 2.7.1 Entrained Air 2.7.2 Gas Solubility 2.7.3 Equivalent Properties of Liquid–Air Mixtures 2.8 Contamination in Hydraulic Fluids 2.8.1 Considerations on Hydraulic Filters 2.8.2 Filter Placement 2.9 Considerations on Hydraulic Reservoirs 2.9.1 Tank Volume 2.9.2 Basic Design of a Tank Problems Chapter 3 Fundamental Equations 3.1 Pascal's Law 3.2 Basic Law of Fluid Statics 3.3 Volumetric Flow Rate 3.4 Conservation of Mass 3.4.1 Application to a Hydraulic Cylinder 3.5 Bernoulli's Equation 3.5.1 Generalized Bernoulli's Equation 3.5.2 Major Losses 3.5.3 Minor Losses 3.6 Hydraulic Resistance 3.7 Stationary Modeling of Flow Networks 3.8 Momentum Equation 3.8.1 Flow Forces Problems Chapter 4 Orifice Basics 4.1 Orifice Equation 4.2 Fixed and Variable Orifices 4.3 Power Loss in Orifices 4.4 Parallel and Series Connections of Orifices 4.5 Functions of Orifices in Hydraulic Systems 4.5.1 Orifices in Pressure and Return Lines 4.5.2 Orifices in Pilot Lines Problems Chapter 5 Dynamic Analysis of Hydraulic Systems 5.1 Pressure Build‐up Equation: Hydraulic Capacitance 5.2 Fluid Inertia Equation: Hydraulic Inductance 5.3 Modeling Flow Network: Dynamic Considerations 5.3.1 Validity of the Lumped Parameter Approach 5.3.2 Further Considerations on the Line Impedance Model 5.4 Damping Effect of Hydraulic Accumulators Problems References Part II Hydraulic Components Objectives Chapter 6 Hydrostatic Pumps and Motors 6.1 Introduction 6.2 The Ideal Case 6.3 General Operating Principle 6.4 ISO Symbols 6.5 Ideal Equations 6.6 The Real Case 6.7 Losses in Pumps and Motors 6.7.1 Fluid Compressibility 6.7.2 Internal and External Leakage 6.7.3 Friction 6.7.4 Other Types of Losses 6.8 Volumetric and Hydromechanical Efficiency 6.8.1 Trends for Volumetric and Hydromechanical Efficiencies 6.9 Design Types 6.9.1 Swashplate‐type Axial Piston Machines 6.9.2 Bent Axis‐type Axial Piston Machines 6.9.3 Radial Piston Machines 6.9.4 Gear Machines 6.9.5 Vane‐type Machines Problems Chapter 7 Hydraulic Cylinders 7.1 Classification 7.2 Cylinder Analysis 7.3 Ideal vs. Real Cylinder 7.4 Telescopic Cylinders 7.4.1 Single Acting Telescopic Cylinder 7.4.2 Double Acting Telescopic Cylinder Problems Chapter 8 Hydraulic Control Valves 8.1 Spring Basics 8.2 Check and Shuttle Valves 8.2.1 Check Valve 8.2.2 Pilot Operated Check Valve 8.2.3 Shuttle Valve 8.3 Pressure Control Valves 8.3.1 Pressure Relief Valve 8.3.2 Pressure‐reducing Valve 8.4 Flow Control Valves 8.4.1 Two‐way Flow Control Valve 8.4.2 Fixed Displacement Pump Circuit with a Two‐way Flow Control Valve 8.4.3 Three‐way Flow Control Valve 8.4.4 Fixed Displacement Pump Circuit with a Three‐way Flow Control Valve 8.5 Directional Control Valves 8.5.1 Meter‐in and Meter‐out Configurations 8.5.2 Neutral Position 8.6 Servovalves 8.6.1 Characteristic of Servovalves 8.6.2 Servovalves vs. Proportional Valves Problems Chapter 9 Hydraulic Accumulators 9.1 Accumulator Types 9.1.1 Weight‐loaded Accumulators 9.1.2 Spring‐loaded Accumulators 9.1.3 Gas‐charged Accumulators 9.1.4 Piston‐type Accumulators 9.1.5 Diaphragm‐type Accumulators 9.1.6 Bladder‐type Accumulators 9.2 Operation of Gas‐charged Accumulators 9.3 Typical Applications 9.3.1 Energy Accumulation 9.3.2 Emergency Supply 9.3.3 Energy Recuperation 9.3.4 Hydraulic Suspensions 9.3.5 Pulsation Dampening: Shock Attenuation 9.4 Equation and Sizing 9.4.1 Accumulator as Energy Storage Device 9.4.2 Accumulator as a Dampening Device Problems References Part III Actuator Control Concepts Objectives Chapter 10 Basics of Actuator Control 10.1 Control Methods: Speed, Force, and Position Control 10.2 Resistive and Overrunning Loads 10.2.1 Power Flow Depending on the Load Conditions Problems Chapter 11 General Concepts for Controlling a Single Actuator 11.1 Supply and Control Concepts 11.2 Flow Supply – Primary Control 11.3 Flow Supply – Metering Control 11.4 Flow Supply – Secondary Control 11.5 Pressure Supply – Primary Control 11.6 Pressure Supply – Metering Control 11.7 Pressure Supply – Secondary Control 11.8 Additional Remarks Chapter 12 Regeneration with Single Rod Actuators 12.1 Basic Concept of Regeneration 12.2 Actual Implementation 12.2.1 Directional Control Valve with External Regeneration Valves 12.2.2 Directional Control Valve with Regenerative Extension Position 12.2.3 Solution with Automated Selection of the Regeneration Mode Problems References Part IV Metering Controls for a Single Actuator Objectives Chapter 13 Fundamentals of Metering Control 13.1 Basic Meter‐in and Meter‐out Control Principles 13.1.1 Meter‐in Control 13.1.2 Meter‐out Control 13.1.3 Remarks on the Meter‐in and the Meter‐out Controls 13.2 Actual Metering Control Components 13.2.1 Single Spool Proportional DCVs 13.2.2 Independent Metering Control Elements 13.3 Use of Anticavitation Valves for Unloaded Meter‐out Problems Chapter 14 Load Holding and Counterbalance Valves 14.1 Load‐holding Valves 14.1.1 Pilot Operated Check Valve 14.2 Counterbalance Valves 14.2.1 Basic Operating Principle 14.2.2 CBV Architecture 14.2.3 Detailed Operation of CBV 14.2.4 Effect of the Pilot Ratio and of the Pressure Setting 14.2.5 Counterbalance Valve with Vented Spring Chambers Problems Chapter 15 Bleed‐off and Open Center Systems 15.1 Basic Bleed‐off and Open Center Circuits 15.2 Bleed‐off Circuit Operation 15.2.1 Energy Analysis 15.3 Basic Open Center System 15.3.1 Operation 15.3.2 Open Center Valve Design 15.3.3 Energy Analysis 15.4 Advanced Open Center Control Architectures 15.4.1 Negative Flow Control 15.4.2 Positive Flow Control 15.4.3 Energy Analysis for Advanced Open Center Architectures Problems Chapter 16 Load Sensing Systems 16.1 Basic Load Sensing Control Concept 16.2 Load Sensing System with Fixed Displacement Pump 16.2.1 Basic Schematic 16.2.2 Operation 16.2.3 Energy Analysis 16.2.4 Saturation Conditions 16.3 Load Sensing Valve 16.4 Load Sensing System with Variable Displacement Pump 16.4.1 Basic Schematic 16.4.2 Operation 16.4.3 Energy Analysis 16.4.4 Saturation Conditions 16.5 Load Sensing Pump 16.6 Load Sensing Solution with Independent Metering Valves 16.7 Electronic Load Sensing (E‐LS) Problems Chapter 17 Constant Pressure Systems 17.1 Constant Pressure System with Variable Displacement Pump 17.1.1 Basic Schematic and Operation 17.1.2 Energy Analysis 17.2 Constant Pressure System with Unloader (CPU) 17.3 Constant Pressure System with Fixed Displacement Pump 17.3.1 Basic Schematic and Operation 17.4 Application to Hydraulic Braking Circuits Problems References Part V Metering Controls for Multiple Actuators Objectives Chapter 18 Basics of Multiple Actuator Systems 18.1 Actuators in Series and in Parallel 18.1.1 Series Configuration 18.1.2 Parallel Configuration 18.2 Elimination of Load Interference in Parallel Actuators 18.2.1 Solving Load Interference Using Compensators 18.2.2 Solving Load Interference with a Volumetric Coupling 18.3 Synchronization of Parallel Actuators Through Flow Dividers 18.3.1 Spool‐type Flow Divider 18.3.2 Spool‐type Flow Divider/Combiner 18.3.3 Volumetric Flow Divider/Combiner Problems Chapter 19 Constant Pressure Systems for Multiple Actuators 19.1 Basic Concepts for a Multi‐Actuator Constant Pressure System 19.1.1 Basic Schematic 19.1.2 Flow Saturation 19.1.3 Energy Analysis 19.2 Complete Schematic for a Multi‐Actuator Constant Pressure System Problems Chapter 20 Open Center Systems for Multiple Actuators 20.1 Parallel Open Center Systems 20.1.1 Operation 20.1.2 Energy Analysis 20.1.3 Flow Saturation 20.1.4 Considerations On the Open Center Spool Design 20.1.5 Load Interference in Open Center Systems 20.2 Tandem and Series Open Center Systems 20.2.1 Tandem Configuration 20.2.2 Series Configuration 20.3 Advanced Open Center Circuit for Multiple Actuators: The Case of Excavators Problems Chapter 21 Load Sensing Systems for Multiple Actuators 21.1 Load Sensing Systems Without Pressure Compensation (LS) 21.1.1 Basic Circuit 21.1.2 Energy Analysis 21.1.3 Valve Implementation and Extension to More Actuators 21.2 Load Sensing Pressure Compensated Systems (LSPC) 21.2.1 LSPC with Pre‐compensated Valve Technology 21.2.2 LSPC with Post‐Compensated Valve Technology 21.3 Flow Saturation and Flow Sharing in LS Systems 21.3.1 Flow Saturation with Pre‐Compensated LSPC 21.3.2 Flow Saturation with Post‐Compensated LSPC 21.4 Pre‐ vs. Post‐compensated Comparison 21.4.1 Pressure Saturation 21.4.2 Flow Saturation 21.4.3 Control Accuracy 21.5 Independent Metering Systems with Load Sensing Problems Chapter 22 Power Steering and Hydraulic Systems with Priority Function 22.1 Hydraulic Power Steering 22.2 Classification of Hydraulic Power Steering Systems 22.3 Hydromechanical Power Steering 22.4 Hydrostatic Power Steering 22.4.1 Hydrostatic Steering Unit Description 22.4.2 Types of Hydrostatic Steering Units 22.5 Priority Valves 22.5.1 Priority Valve for a Fixed Displacement Flow Supply 22.5.2 Priority Valve for Load Sensing Circuits Problems References Part VI Hydrostatic Transmissions and Hydrostatic Actuators Objectives Chapter 23 Basics and Classifications 23.1 Hydrostatic Transmissions and Hydrostatic Actuators 23.1.1 Basic Definitions 23.1.2 Supply Concepts Used in Hydrostatic Transmissions and Hydrostatic Actuators 23.2 Primary Units for Hydrostatic Transmissions and Hydrostatic Actuators 23.2.1 Constant Speed Prime Mover and Variable Displacement Pump 23.2.2 Variable Speed Prime Mover and Fixed Displacement Pump 23.2.3 Variable Speed Prime Mover and Variable Displacement Pump 23.3 Over‐center Variable Displacement Pump 23.4 Typical Applications 23.5 Classification Summary Chapter 24 Hydrostatic Transmissions 24.1 Main Parameters for a Hydrostatic Transmission 24.2 Theoretical Layouts 24.2.1 Pump and Motor with Fixed Displacement (PFMF) 24.2.2 Variable Displacement Pump and Fixed Displacement Motor (PVMF) 24.2.3 Fixed Displacement Pump and Variable Displacement Motor (PFMV) 24.2.4 Variable Displacement Pump and Variable Displacement Motor (PVMV) 24.2.5 Variable Displacement Pump and Dual Displacement Motor (PVM2) 24.3 Open Circuit Hydrostatic Transmissions 24.3.1 Open Circuit HT with Flow Supply: Basic Circuit 24.3.2 Open Circuit HT with Flow Supply: Common Implementation 24.4 Closed Circuit Hydrostatic Transmissions 24.4.1 Charge Circuit and Filtration 24.4.2 Cross‐port Pressure Relief Valves 24.4.3 Flushing Circuit 24.5 Closed Circuit Displacement Regulators 24.5.1 Electrohydraulic Displacement Regulator for Closed Circuit Pumps 24.5.2 Automotive Control for Closed Circuit Pumps 24.5.3 Electrohydraulic Displacement Regulator for Motors 24.5.4 Automatic Pressure Regulator for Motors Problems Chapter 25 Hydrostatic Transmissions Applied to Vehicle Propulsion 25.1 Basic of Vehicle Transmission 25.2 Classification for Variable Ratio Transmission Systems 25.3 Power‐split Transmissions 25.3.1 Planetary Gear Train 25.3.2 Hydromechanical Power‐split Transmission 25.4 Hybrid Transmissions 25.4.1 Series Hybrids 25.4.2 Parallel Hybrids 25.4.3 Series‐parallel Hybrids (or Power‐split Hybrids) 25.5 Sizing Hydrostatic Transmissions for Propel Applications 25.5.1 Step 1: Maximum Tractive Effort Calculation 25.5.2 Step 2: Fixed or Variable Displacement Motor Selection 25.5.3 Step 3: Sizing of the Motor (Secondary Unit) 25.5.4 Step 4: Sizing of the Pump (Primary Unit) 25.5.5 Step 5: Check Results Problems Chapter 26 Hydrostatic Actuators 26.1 Open Circuit Hydrostatic Actuators 26.2 Closed Circuit Hydrostatic Actuators 26.2.1 Cylinder Extension 26.2.1.1 Extension in Pumping Mode (F > F*) 26.2.1.2 Extension in Motoring Mode (F < F*) 26.2.2 Cylinder Retraction 26.2.2.1 Retraction in Motoring Mode (F > F*) 26.2.2.2 Retraction in Pumping Mode (F < F*) 26.3 Further Considerations on the Charge Pump and the Accumulator 26.4 Final Remarks on Hydrostatic Actuators Chapter 27 Secondary Controlled Hydrostatic Transmissions 27.1 Basic Implementation 27.2 Secondary Control Circuit with Tachometric Pump 27.3 Secondary Control Circuit with Tachometric Pump and Internal Force Feedback 27.4 Secondary Control Circuit with Electronic Control 27.5 Multiple Actuators Problems References Appendix A Prime Movers and Their Interaction with the Hydraulic Circuit A.1 Corner Power Method and its Limitations A.2 Diesel Engine and its Interaction with a Hydraulic Pump A.2.1 Diesel Engine Regulation A.2.2 Engine Stall A.2.3 Overrunning Loads A.2.4 Fuel Consumption A.3 Electric Prime Movers A.3.1 Brushed DC Electric Motors A.3.1.1 DC Hydraulic Power Units A.3.2 Induction Motor (or Asynchronous Motor) A.3.3 Synchronous Motor A.4 Power Limitation in Hydraulic Pumps A.4.1 Torque Limiting Using Fixed Displacement Pumps A.4.2 Torque Limiting Using Variable Displacement Pumps References Index EULA