ورود به حساب

نام کاربری گذرواژه

گذرواژه را فراموش کردید؟ کلیک کنید

حساب کاربری ندارید؟ ساخت حساب

ساخت حساب کاربری

نام نام کاربری ایمیل شماره موبایل گذرواژه

برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید


09117307688
09117179751

در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید

دسترسی نامحدود

برای کاربرانی که ثبت نام کرده اند

ضمانت بازگشت وجه

درصورت عدم همخوانی توضیحات با کتاب

پشتیبانی

از ساعت 7 صبح تا 10 شب

دانلود کتاب Hydraulic Engineering of Dams

دانلود کتاب مهندسی هیدرولیک سدها

Hydraulic Engineering of Dams

مشخصات کتاب

Hydraulic Engineering of Dams

ویرایش:  
نویسندگان:   
سری:  
ISBN (شابک) : 2019020884, 9780203771433 
ناشر:  
سال نشر: 2019 
تعداد صفحات: [1081] 
زبان: English 
فرمت فایل : PDF (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود) 
حجم فایل: 265 Mb 

قیمت کتاب (تومان) : 48,000



ثبت امتیاز به این کتاب

میانگین امتیاز به این کتاب :
       تعداد امتیاز دهندگان : 4


در صورت تبدیل فایل کتاب Hydraulic Engineering of Dams به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.

توجه داشته باشید کتاب مهندسی هیدرولیک سدها نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.


توضیحاتی درمورد کتاب به خارجی



فهرست مطالب

Cover
Half Title
Title
Copyright
Dedication
Contents
Preface
Authors’ CVs
1 Introduction
	1.1 Definition and purposes of dams
	1.2 Worldwide importance of dams and reservoirs
	1.3 Historical overview and challenges of dam engineering
	1.4 Dams as critical water infrastructures
	1.5 Safe operation of dams and reservoirs through advanced dam safety concepts: example of Switzerland
	1.6 Appurtenant structures of dams
		1.6.1 Overview
		1.6.2 Spillways including overflow and dissipation structures
		1.6.3 Bottom outlets
		1.6.4 Intakes
		1.6.5 River diversion
	1.7 Hydraulic engineering of dams: structure of the book
	References
2 Frontal crest overflow
	2.1 Introduction
		2.1.1 Overflow structures
		2.1.2 Overflow types
		2.1.3 Significance of overflow structure
	2.2 Frontal overflow
		2.2.1 Crest shapes and standard crest
		2.2.2 Free surface profile and discharge characteristics
		2.2.3 Bottom pressure characteristics
		2.2.4 Velocity distribution
		2.2.5 Cavitation design
		2.2.6 Crest piers
		2.2.7 Overflow crest gates
	2.3 Additional weir effects
		2.3.1 Influence of weir face slopes
		2.3.2 Embankment weir
	2.4 Scale effects
		2.4.1 Real fluid effects in weir flow
		2.4.2 Boundary layer development
		2.4.3 Discharge coefficient
		2.4.4 Round-crested weir flow analogy
	Notation
	References
	Bibliography
3 Spatial crest overflow
	3.1 Introduction
	3.2 Side channel
		3.2.1 Typology
		3.2.2 Hydraulic design
		3.2.3 Spatial flow features
		3.2.4 Examples of physical model studies
	3.3 Morning glory overfall
		3.3.1 Hydraulic concept
		3.3.2 Crest shape
		3.3.3 Discharge and pressure characteristics
		3.3.4 Vertical shaft structure
		3.3.5 Shaft air supply
		3.3.6 Case study
	3.4 Labyrinth weir
		3.4.1 Historical evolution
		3.4.2 Design criteria
	3.5 Piano key weir
		3.5.1 Historical evolution
		3.5.2 PKW types and notation
		3.5.3 Rating curve
		3.5.4 Further design aspects
		3.5.5 Downstream toe scour on riverbed
		3.5.6 Upstream riverbed
	3.6 Siphon
		3.6.1 Description
		3.6.2 Black-water siphon
		3.6.3 White-water siphon
	Notation
	References
	Bibliography
4 Spillway chute
	4.1 Introduction
	4.2 Smooth chute
		4.2.1 Hydraulic design
		4.2.2 Surface air entrainment
		4.2.3 Development of aerated chute flow
		4.2.4 Spacing of chute aerators
		4.2.5 Air transport phenomena
	4.3 Uniform-aerated chute flow
		4.3.1 Experimental approach
	4.4 Chute aerator
		4.4.1 Motivation and historical development
		4.4.2 Cavitation potential
		4.4.3 Cavitation protection
		4.4.4 Aerator geometry and air supply system
		4.4.5 Air transport downstream of aerator
		4.4.6 Jet length and air entrainment coefficient
		4.4.7 Downstream air concentration development
		4.4.8 Effect of pre-aerated approach flow
		4.4.9 Steep deflectors and cavity sub-pressure
		4.4.10 Design procedure
	4.5 Shock waves
		4.5.1 Introduction
		4.5.2 Chute expansion
		4.5.3 Chute bend
		4.5.4 Chute contraction
	4.6 Roll waves
		4.6.1 Definition and early advances
		4.6.2 Advances from Montuori
	4.7 Stepped chute
		4.7.1 Introduction
		4.7.2 Main application
		4.7.3 General considerations
		4.7.4 Hydraulic design
	Notation
	References
	Bibliography
5 Dissipation structures
	5.1 Introduction
	5.2 Hydraulic jump
		5.2.1 Classical hydraulic jump
		5.2.2 Hydraulic approach
		5.2.3 Undular hydraulic jump
	5.3 Stilling basins
		5.3.1 General
		5.3.2 Baffle-sill basin
		5.3.3 Baffle-block basin
		5.3.4 Abruptly expanding stilling basin
		5.3.5 Slotted-bucket stilling basin
		5.3.6 Basin characteristics
	5.4 Drop structures
		5.4.1 Basic flow features
		5.4.2 Drop impact structures
		5.4.3 Scour characteristics at unlined drop structures
	5.5 Free fall outlets
		5.5.1 Introduction
		5.5.2 Jet trajectory
		5.5.3 Jet impact
	Notation
	References
	Bibliography
6 Ski jump and plunge pool
	6.1 Introduction
	6.2 Ski jump
		6.2.1 Description of structure and takeoff
		6.2.2 Jet trajectory and disintegration
		6.2.3 Bucket pressure, energy dissipation and choking features
		6.2.4 Ski jump with triangular bucket
		6.2.5 Air entrainment in ski-jump jets
		6.2.6 Generalized jet air concentration features
	6.3 Flip bucket
		6.3.1 Types of bucket geometries
		6.3.2 Horizontal triangular-shaped flip bucket
	6.4 Granular scour
		6.4.1 Granular scour and assessment methods
		6.4.2 Effect of jet air content
		6.4.3 Hydraulics of plane plunge pool scour
		6.4.4 Hydraulics of spatial plunge pool scour
		6.4.5 3D Flow features in plunge pool
		6.4.6 Temporal evolution of spatial plunge pool scour
	6.5 Rock scour
		6.5.1 Introduction and challenges
		6.5.2 Comprehensive scour method
		6.5.3 CSM with active jet air entrainment
		6.5.4 Difficulties in estimating scour depth
		6.5.5 Measures for scour control
		6.5.6 Case study: Kariba Dam scour hole
	Notation
	References
	Bibliography
7 River diversion structures
	7.1 Introduction
	7.2 Diversion tunnel
		7.2.1 Introduction
		7.2.2 Inlet flow
		7.2.3 Tunnel flow
		7.2.4 Choking flow
		7.2.5 Outlet structure
		7.2.6 Erosion protection at tunnel outlet
		7.2.7 Surface protection of cofferdams
	7.3 River diversion
		7.3.1 Effect of constriction
		7.3.2 Transitional flow
		7.3.3 Subcritical flow
	7.4 Culvert
		7.4.1 Introduction
		7.4.2 Hydraulic design
	7.5 Pier and abutment scour
		7.5.1 Introduction
		7.5.2 Experimental setup
		7.5.3 Scour depth equation
		7.5.4 Limitations and further results
		7.5.5 Effect of flood wave
		7.5.6 Protection against scour using riprap
	Notation
	References
	Bibliography
8 Intakes and outlets
	8.1 Introduction
	8.2 High submergence intakes
		8.2.1 Design principles
		8.2.2 Orifice flow
		8.2.3 Inlet geometry
	8.3 Low submergence intakes
		8.3.1 Vortex flow
		8.3.2 Vertical intake vortex
		8.3.3 Limit or critical intake submergence
		8.3.4 Air entrainment
		8.3.5 Design recommendations
	8.4 Practical aspects
		8.4.1 Floating debris and trash-rack vibrations
		8.4.2 Emergency gate closure
	8.5 Gate flow
		8.5.1 Introduction
		8.5.2 Vertical planar gate flow
		8.5.3 Hinged sloping flap gate
		8.5.4 Hydraulics of standard vertical gate
	8.6 Low-level outlet
		8.6.1 Design principles
		8.6.2 Gate types
		8.6.3 Gate vibrations
		8.6.4 Hydraulics of high-head gates
		8.6.5 Cavitation and cavitation damage
		8.6.6 Passive and active air entrainment
		8.6.7 Interaction of water flow and air entrainment
		8.6.8 Recent experimentation on air demand
	Notation
	References
	Bibliography
9 Reservoir sedimentation
	9.1 Involved processes and sustainable reservoir use
	9.2 Sedimentation rate and sediment distribution
	9.3 Evolution of knowledge and management competence
	9.4 Measures against reservoir sedimentation
		9.4.1 Overview
		9.4.2 Measures in catchment area
		9.4.3 Measures in reservoir
		9.4.4 Measures at dam
	9.5 Sediment bypass tunnel
		9.5.1 General
		9.5.2 Suitable bypassing discharge and target sediment granulometry
		9.5.3 Hydraulic design
		9.5.4 Hydro-abrasion processes
		9.5.5 Bed load particle motion dynamics
		9.5.6 Mechanistic abrasion model
		9.5.7 Lining material
		9.5.8 Design of tunnel invert lining
		9.5.9 Tunnel operation, maintenance, and rehabilitation
		9.5.10 Instrumentation and monitoring techniques
		9.5.11 Ecological impacts of SBT operation
	9.6 Turbidity currents
		9.6.1 Definition
		9.6.2 Plunge point and equilibrium flow
		9.6.3 Flow over obstacle
		9.6.4 Flow across screen
		9.6.5 Control by opposing jets
		9.6.6 Intrusion
	9.7 Sedimentation control
		9.7.1 Turbulent suspension
		9.7.2 Recommendations on turbidity current venting
		9.7.3 Sediment flushing
		9.7.4 Selection of reservoir geometry and locations of inlets and outlets
	9.8 Secondary hydraulic effects
		9.8.1 Upstream river
		9.8.2 Downstream river
		9.8.3 Replenishment or disposal of sediments
	Notation
	References
	Bibliography
10 Impulse waves in reservoirs
	10.1 Introduction
	10.2 Fundamental approaches
		10.2.1 Wave theories and impulse waves
		10.2.2 Wave generation by moving wedge
		10.2.3 Wave generation by falling mass
		10.2.4 Wave run-up and overtopping features
	10.3 2D impulse wave generation and propagation
		10.3.1 Review of research activities
		10.3.2 Experimentation
		10.3.3 Experimental results
	10.4 Impulse wave types
		10.4.1 Motivation and experimentation
		10.4.2 Experimental results and discussion
		10.4.3 Shortcut on nonlinear wave theories
	10.5 Transformation of solitary wave to overland flow
		10.5.1 Motivation and experimentation
		10.5.2 Plane wave run-up
		10.5.3 Plane overland flow
	10.6 Underwater deposition feature
		10.6.1 Motivation and data basis
		10.6.2 Test results
	10.7 Rigid dam overtopping
		10.7.1 Motivation and experimentation
		10.7.2 Overtopping processes
		10.7.3 Experimental results
	10.8 Erodable dam overtopping
		10.8.1 Motivation and literature review
		10.8.2 Experimental program
		10.8.3 Experimental results
		10.8.4 Discussion of results
	10.9 Spatial impulse waves
		10.9.1 Motivation
		10.9.2 Experimental setup
		10.9.3 Process description
		10.9.4 Experimental results
		10.9.5 Discussion of results
		10.9.6 Relevance for practice
	Notation
	References
	Bibliography
11 Dam breach
	11.1 Introduction
	11.2 Empirical breach data
		11.2.1 Breach characteristics and examples
		11.2.2 Breach characteristics and temporal breach development
	11.3 Progressive 2D breach
		11.3.1 Introduction
		11.3.2 Hydraulic modeling
		11.3.3 Normalized results
		11.3.4 Generalized approach
	11.4 Fuse plug
		11.4.1 Main features
		11.4.2 Case study
	11.5 Instantaneous 2D breach
		11.5.1 De Saint-Venant equations
		11.5.2 Ritter’s solution
		11.5.3 Dressler’s asymptotic solution
		11.5.4 Pohle’s 2D approach
		11.5.5 Hunt’s asymptotic solution
		11.5.6 Front treatment
		11.5.7 Experimental approach
		11.5.8 Dam-break waves for silted-up reservoirs
	Notation
	References
	Bibliography
Subject Index
Author Index




نظرات کاربران