دسترسی نامحدود
برای کاربرانی که ثبت نام کرده اند
برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید
در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید
برای کاربرانی که ثبت نام کرده اند
درصورت عدم همخوانی توضیحات با کتاب
از ساعت 7 صبح تا 10 شب
ویرایش:
نویسندگان: Willi Hager
سری:
ISBN (شابک) : 2019020884, 9780203771433
ناشر:
سال نشر: 2019
تعداد صفحات: [1081]
زبان: English
فرمت فایل : PDF (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود)
حجم فایل: 265 Mb
در صورت تبدیل فایل کتاب Hydraulic Engineering of Dams به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.
توجه داشته باشید کتاب مهندسی هیدرولیک سدها نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.
Cover Half Title Title Copyright Dedication Contents Preface Authors’ CVs 1 Introduction 1.1 Definition and purposes of dams 1.2 Worldwide importance of dams and reservoirs 1.3 Historical overview and challenges of dam engineering 1.4 Dams as critical water infrastructures 1.5 Safe operation of dams and reservoirs through advanced dam safety concepts: example of Switzerland 1.6 Appurtenant structures of dams 1.6.1 Overview 1.6.2 Spillways including overflow and dissipation structures 1.6.3 Bottom outlets 1.6.4 Intakes 1.6.5 River diversion 1.7 Hydraulic engineering of dams: structure of the book References 2 Frontal crest overflow 2.1 Introduction 2.1.1 Overflow structures 2.1.2 Overflow types 2.1.3 Significance of overflow structure 2.2 Frontal overflow 2.2.1 Crest shapes and standard crest 2.2.2 Free surface profile and discharge characteristics 2.2.3 Bottom pressure characteristics 2.2.4 Velocity distribution 2.2.5 Cavitation design 2.2.6 Crest piers 2.2.7 Overflow crest gates 2.3 Additional weir effects 2.3.1 Influence of weir face slopes 2.3.2 Embankment weir 2.4 Scale effects 2.4.1 Real fluid effects in weir flow 2.4.2 Boundary layer development 2.4.3 Discharge coefficient 2.4.4 Round-crested weir flow analogy Notation References Bibliography 3 Spatial crest overflow 3.1 Introduction 3.2 Side channel 3.2.1 Typology 3.2.2 Hydraulic design 3.2.3 Spatial flow features 3.2.4 Examples of physical model studies 3.3 Morning glory overfall 3.3.1 Hydraulic concept 3.3.2 Crest shape 3.3.3 Discharge and pressure characteristics 3.3.4 Vertical shaft structure 3.3.5 Shaft air supply 3.3.6 Case study 3.4 Labyrinth weir 3.4.1 Historical evolution 3.4.2 Design criteria 3.5 Piano key weir 3.5.1 Historical evolution 3.5.2 PKW types and notation 3.5.3 Rating curve 3.5.4 Further design aspects 3.5.5 Downstream toe scour on riverbed 3.5.6 Upstream riverbed 3.6 Siphon 3.6.1 Description 3.6.2 Black-water siphon 3.6.3 White-water siphon Notation References Bibliography 4 Spillway chute 4.1 Introduction 4.2 Smooth chute 4.2.1 Hydraulic design 4.2.2 Surface air entrainment 4.2.3 Development of aerated chute flow 4.2.4 Spacing of chute aerators 4.2.5 Air transport phenomena 4.3 Uniform-aerated chute flow 4.3.1 Experimental approach 4.4 Chute aerator 4.4.1 Motivation and historical development 4.4.2 Cavitation potential 4.4.3 Cavitation protection 4.4.4 Aerator geometry and air supply system 4.4.5 Air transport downstream of aerator 4.4.6 Jet length and air entrainment coefficient 4.4.7 Downstream air concentration development 4.4.8 Effect of pre-aerated approach flow 4.4.9 Steep deflectors and cavity sub-pressure 4.4.10 Design procedure 4.5 Shock waves 4.5.1 Introduction 4.5.2 Chute expansion 4.5.3 Chute bend 4.5.4 Chute contraction 4.6 Roll waves 4.6.1 Definition and early advances 4.6.2 Advances from Montuori 4.7 Stepped chute 4.7.1 Introduction 4.7.2 Main application 4.7.3 General considerations 4.7.4 Hydraulic design Notation References Bibliography 5 Dissipation structures 5.1 Introduction 5.2 Hydraulic jump 5.2.1 Classical hydraulic jump 5.2.2 Hydraulic approach 5.2.3 Undular hydraulic jump 5.3 Stilling basins 5.3.1 General 5.3.2 Baffle-sill basin 5.3.3 Baffle-block basin 5.3.4 Abruptly expanding stilling basin 5.3.5 Slotted-bucket stilling basin 5.3.6 Basin characteristics 5.4 Drop structures 5.4.1 Basic flow features 5.4.2 Drop impact structures 5.4.3 Scour characteristics at unlined drop structures 5.5 Free fall outlets 5.5.1 Introduction 5.5.2 Jet trajectory 5.5.3 Jet impact Notation References Bibliography 6 Ski jump and plunge pool 6.1 Introduction 6.2 Ski jump 6.2.1 Description of structure and takeoff 6.2.2 Jet trajectory and disintegration 6.2.3 Bucket pressure, energy dissipation and choking features 6.2.4 Ski jump with triangular bucket 6.2.5 Air entrainment in ski-jump jets 6.2.6 Generalized jet air concentration features 6.3 Flip bucket 6.3.1 Types of bucket geometries 6.3.2 Horizontal triangular-shaped flip bucket 6.4 Granular scour 6.4.1 Granular scour and assessment methods 6.4.2 Effect of jet air content 6.4.3 Hydraulics of plane plunge pool scour 6.4.4 Hydraulics of spatial plunge pool scour 6.4.5 3D Flow features in plunge pool 6.4.6 Temporal evolution of spatial plunge pool scour 6.5 Rock scour 6.5.1 Introduction and challenges 6.5.2 Comprehensive scour method 6.5.3 CSM with active jet air entrainment 6.5.4 Difficulties in estimating scour depth 6.5.5 Measures for scour control 6.5.6 Case study: Kariba Dam scour hole Notation References Bibliography 7 River diversion structures 7.1 Introduction 7.2 Diversion tunnel 7.2.1 Introduction 7.2.2 Inlet flow 7.2.3 Tunnel flow 7.2.4 Choking flow 7.2.5 Outlet structure 7.2.6 Erosion protection at tunnel outlet 7.2.7 Surface protection of cofferdams 7.3 River diversion 7.3.1 Effect of constriction 7.3.2 Transitional flow 7.3.3 Subcritical flow 7.4 Culvert 7.4.1 Introduction 7.4.2 Hydraulic design 7.5 Pier and abutment scour 7.5.1 Introduction 7.5.2 Experimental setup 7.5.3 Scour depth equation 7.5.4 Limitations and further results 7.5.5 Effect of flood wave 7.5.6 Protection against scour using riprap Notation References Bibliography 8 Intakes and outlets 8.1 Introduction 8.2 High submergence intakes 8.2.1 Design principles 8.2.2 Orifice flow 8.2.3 Inlet geometry 8.3 Low submergence intakes 8.3.1 Vortex flow 8.3.2 Vertical intake vortex 8.3.3 Limit or critical intake submergence 8.3.4 Air entrainment 8.3.5 Design recommendations 8.4 Practical aspects 8.4.1 Floating debris and trash-rack vibrations 8.4.2 Emergency gate closure 8.5 Gate flow 8.5.1 Introduction 8.5.2 Vertical planar gate flow 8.5.3 Hinged sloping flap gate 8.5.4 Hydraulics of standard vertical gate 8.6 Low-level outlet 8.6.1 Design principles 8.6.2 Gate types 8.6.3 Gate vibrations 8.6.4 Hydraulics of high-head gates 8.6.5 Cavitation and cavitation damage 8.6.6 Passive and active air entrainment 8.6.7 Interaction of water flow and air entrainment 8.6.8 Recent experimentation on air demand Notation References Bibliography 9 Reservoir sedimentation 9.1 Involved processes and sustainable reservoir use 9.2 Sedimentation rate and sediment distribution 9.3 Evolution of knowledge and management competence 9.4 Measures against reservoir sedimentation 9.4.1 Overview 9.4.2 Measures in catchment area 9.4.3 Measures in reservoir 9.4.4 Measures at dam 9.5 Sediment bypass tunnel 9.5.1 General 9.5.2 Suitable bypassing discharge and target sediment granulometry 9.5.3 Hydraulic design 9.5.4 Hydro-abrasion processes 9.5.5 Bed load particle motion dynamics 9.5.6 Mechanistic abrasion model 9.5.7 Lining material 9.5.8 Design of tunnel invert lining 9.5.9 Tunnel operation, maintenance, and rehabilitation 9.5.10 Instrumentation and monitoring techniques 9.5.11 Ecological impacts of SBT operation 9.6 Turbidity currents 9.6.1 Definition 9.6.2 Plunge point and equilibrium flow 9.6.3 Flow over obstacle 9.6.4 Flow across screen 9.6.5 Control by opposing jets 9.6.6 Intrusion 9.7 Sedimentation control 9.7.1 Turbulent suspension 9.7.2 Recommendations on turbidity current venting 9.7.3 Sediment flushing 9.7.4 Selection of reservoir geometry and locations of inlets and outlets 9.8 Secondary hydraulic effects 9.8.1 Upstream river 9.8.2 Downstream river 9.8.3 Replenishment or disposal of sediments Notation References Bibliography 10 Impulse waves in reservoirs 10.1 Introduction 10.2 Fundamental approaches 10.2.1 Wave theories and impulse waves 10.2.2 Wave generation by moving wedge 10.2.3 Wave generation by falling mass 10.2.4 Wave run-up and overtopping features 10.3 2D impulse wave generation and propagation 10.3.1 Review of research activities 10.3.2 Experimentation 10.3.3 Experimental results 10.4 Impulse wave types 10.4.1 Motivation and experimentation 10.4.2 Experimental results and discussion 10.4.3 Shortcut on nonlinear wave theories 10.5 Transformation of solitary wave to overland flow 10.5.1 Motivation and experimentation 10.5.2 Plane wave run-up 10.5.3 Plane overland flow 10.6 Underwater deposition feature 10.6.1 Motivation and data basis 10.6.2 Test results 10.7 Rigid dam overtopping 10.7.1 Motivation and experimentation 10.7.2 Overtopping processes 10.7.3 Experimental results 10.8 Erodable dam overtopping 10.8.1 Motivation and literature review 10.8.2 Experimental program 10.8.3 Experimental results 10.8.4 Discussion of results 10.9 Spatial impulse waves 10.9.1 Motivation 10.9.2 Experimental setup 10.9.3 Process description 10.9.4 Experimental results 10.9.5 Discussion of results 10.9.6 Relevance for practice Notation References Bibliography 11 Dam breach 11.1 Introduction 11.2 Empirical breach data 11.2.1 Breach characteristics and examples 11.2.2 Breach characteristics and temporal breach development 11.3 Progressive 2D breach 11.3.1 Introduction 11.3.2 Hydraulic modeling 11.3.3 Normalized results 11.3.4 Generalized approach 11.4 Fuse plug 11.4.1 Main features 11.4.2 Case study 11.5 Instantaneous 2D breach 11.5.1 De Saint-Venant equations 11.5.2 Ritter’s solution 11.5.3 Dressler’s asymptotic solution 11.5.4 Pohle’s 2D approach 11.5.5 Hunt’s asymptotic solution 11.5.6 Front treatment 11.5.7 Experimental approach 11.5.8 Dam-break waves for silted-up reservoirs Notation References Bibliography Subject Index Author Index