دسترسی نامحدود
برای کاربرانی که ثبت نام کرده اند
برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید
در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید
برای کاربرانی که ثبت نام کرده اند
درصورت عدم همخوانی توضیحات با کتاب
از ساعت 7 صبح تا 10 شب
دسته بندی: انرژی ویرایش: نویسندگان: Ersan Kabalci سری: ISBN (شابک) : 9780128217245, 0128217243 ناشر: Academic Press سال نشر: 2020 تعداد صفحات: 521 زبان: English فرمت فایل : PDF (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود) حجم فایل: 41 مگابایت
در صورت تبدیل فایل کتاب Hybrid Renewable Energy Systems and Microgrids به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.
توجه داشته باشید کتاب سیستم های هیبریدی انرژی های تجدیدپذیر و ریزشبکه ها نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.
سیستمهای انرژی تجدیدپذیر ترکیبی و ریزشبکهها مدلسازی و تحلیل هر نوع سیستم انرژی ترکیبی یکپارچه و عملیاتی را پوشش میدهد. با نگاهی به مبانی سیستمهای انرژی متعارف، سیستمهای تولید غیرمتمرکز، فناوریهای RES و ادغام هیبریدی نیروگاههای RES، مهمترین کمکی که این کتاب انجام میدهد ترکیب سیستمهای انرژی نوظهور است که سیستمهای شبکه خرد و هوشمند و اجزای آنها را بهبود میبخشد. بخشها ویژگیهای سیستم سنتی، ویژگیها، چالشها و مزایای سیستمهای انرژی هیبریدی نسبت به شبکه برق معمولی، استقرار فناوریهای الکترونیک قدرت در حال ظهور، و دستگاهها و سیستمهای الکترونیکی بهروز، از جمله شکلهای موج AC و DC را پوشش میدهند. روشها و فنآوریهای کنترل مرسوم، نوظهور و سلسله مراتبی که در عملیات ریزشبکه به کار میروند، پوشش داده شدهاند تا به محققان و متخصصان اطلاعات مورد نیاز برای اطمینان از قابلیت اطمینان، انعطافپذیری و انعطافپذیری سیستمهای انرژی هیبریدی اجرا شده ارائه شود. ارائه مطالب دقیق در مورد شبکه های برق نوظهور ارائه شده توسط رویکردهای تولید غیرمتمرکز و پراکنده، عوامل محرک، مدل سازی نیروگاه مبتنی بر فتوولتائیک و مطالعات برنامه ریزی را پوشش می دهد.
Hybrid Renewable Energy Systems and Microgrids covers the modeling and analysis for each type of integrated and operational hybrid energy system. Looking at the fundamentals for conventional energy systems, decentralized generation systems, RES technologies and hybrid integration of RES power plants, the most important contribution this book makes is combining emerging energy systems that improve micro and smart grid systems and their components. Sections cover traditional system characteristics, features, challenges and benefits of hybrid energy systems over the conventional power grid, the deployment of emerging power electronic technologies, and up-to-date electronic devices and systems, including AC and DC waveforms. Conventional, emerging and hierarchical control methods and technologies applied in microgrid operations are covered to give researchers and practitioners the information needed to ensure reliability, resilience and flexibility of implemented hybrid energy systems. Presents detailed contents on emerging power networks provided by decentralized and distributed generation approaches Covers driving factors, photovoltaic based power plant modeling and planning studies Introduces hierarchical control methods and technologies applied in microgrid operations to ensure reliability, resilience and flexibility of hybrid energy systems
Hybrid Renewable Energy Systems and Microgrids Copyright Contents List of contributors 1 Introduction to power systems 1.1 Introduction 1.2 Fundamentals of electric power systems 1.2.1 Basics of power in ac systems 1.2.2 Kirchhoff’s laws 1.2.3 Instantaneous and complex power in ac systems 1.3 Balanced three-phase systems 1.3.1 Balanced Y connection 1.3.2 Balanced Δ connection 1.4 Per-unit system 1.5 Power generation and electric machines 1.5.1 The principles of electromechanical energy conversion 1.5.2 Generator operation of electric machines References 2 Centralized power generation 2.1 Introduction 2.2 Hydropower power plant 2.2.1 Reservoir-based hydropower plants and dams 2.2.2 Pumped-storage hydropower 2.2.3 Hydraulic turbines 2.3 Thermal power plants 2.3.1 Coal-fired power plants 2.3.2 Gas-fired power plants 2.3.3 Gas-turbine principle 2.4 Nuclear power plant 2.4.1 Nuclear fission 2.4.2 Fusion 2.4.3 Nuclear fission reactors 2.4.3.1 Boiling water reactor 2.4.3.2 Pressurized water reactor 2.4.3.3 The pressurized heavy-water reactor (Canada Deuterium Uranium) 2.4.3.4 Gas-cooled reactors References 3 Distributed generation and microgrids 3.1 Introduction 3.2 Microgrid 3.3 Distributed generation 3.3.1 Diesel generator 3.3.2 Microturbine 3.3.3 Fuel cell 3.3.4 Wind turbine 3.3.5 Photovoltaic panel 3.4 The load model of the microgrid 3.5 Optimization algorithm 3.5.1 Objective functions 3.5.1.1 Loss index 3.5.1.2 Voltage index 3.5.2 Constraints 3.5.2.1 Distributed generation constraint 3.5.2.2 Voltage of busses constraint 3.5.3 Intelligent algorithm 3.5.3.1 Multiobjective gray wolf optimization algorithm 3.5.3.2 Fuzzy method 3.6 Numerical results 3.7 Conclusion References 4 Renewable energy systems 4.1 Chapter overview 4.2 Photovoltaic power generation 4.2.1 Principles of solar radiation 4.2.1.1 Measuring radiation 4.2.2 Photovoltaic cell fundamentals 4.2.2.1 Solar module 4.2.3 Photovoltaic systems 4.3 Wind power generation 4.3.1 Wind resource 4.3.1.1 Wind shear 4.3.1.2 Wind direction 4.3.1.3 Turbulence 4.3.1.4 Wind speed histograms 4.3.1.5 Duration curve 4.3.1.6 Wind speed distributions 4.3.1.7 Wind atlas 4.3.1.8 Wind measurement and instrumentation 4.3.1.8.1 Wind speed measuring instrumentation 4.3.1.8.2 Wind direction measuring instrumentation 4.3.1.8.3 Vegetation indicators 4.3.2 Wind potential assessment (siting) 4.3.2.1 Hybrid power systems 4.3.2.2 Offshore wind energy 4.3.2.2.1 The offshore wind resource 4.4 Hydroelectric power generation 4.4.1 Conventional hydroelectric power 4.4.1.1 Measuring precipitation 4.4.1.2 System components 4.4.1.2.1 Dam, weir, or barrage 4.4.1.2.2 Intake 4.4.1.2.3 Penstock 4.4.1.2.4 Turbines 4.4.1.2.5 Outlet 4.4.1.2.6 Overall system 4.4.1.2.7 Regulation 4.4.1.3 Classification of hydroelectric plants 4.4.1.3.1 Low-head plants 4.4.1.3.2 Medium-head plants 4.4.1.3.3 High-head plants 4.4.1.4 Operation behavior 4.4.2 Hydrokinetic energy 4.4.2.1 Runoff measuring 4.4.2.2 Hydrokinetic energy exploitation systems 4.4.2.2.1 River current 4.4.2.2.2 Marine current 4.4.3 Wave energy 4.4.3.1 Wave energy exploitation systems 4.4.3.1.1 Tapered channel wave energy conversion device system 4.4.3.1.2 Oscillating water column system 4.4.3.1.3 Pelamis Wave Power 4.4.4 Tidal energy 4.4.4.1 Tidal energy exploitation systems 4.4.4.1.1 Tidal power station 4.4.4.1.2 Tidal stream 4.5 Biomass power generation 4.5.1 Biomass fundamentals 4.5.1.1 Biomass photosynthesis 4.5.1.2 Biomass sources 4.5.1.3 Potential energy crop production opportunities and challenges in the growing demand for biomass 4.5.1.4 Forest biomass energy plantations 4.5.2 Biomass characteristics 4.5.2.1 Composition of plant biomass 4.5.2.2 The energy content of biomass 4.5.2.3 Physical characteristics 4.5.2.4 Chemical characteristics 4.5.2.4.1 Proximate analysis 4.5.2.4.2 Polymeric composition 4.5.2.5 Heat value 4.5.3 Biomass conversion into useful energy 4.5.3.1 Prime mover systems and fuels 4.5.3.2 Cofiring of biomass in coal-fired power plants 4.5.3.3 Cofiring technologies 4.5.3.4 Performance and costs 4.5.3.5 Sustainability, potential, and barriers 4.6 Conclusion References 5 Hybrid renewable energy sources power systems 5.1 Introduction 5.2 Renewable energy-based hybrid power system 5.3 PV–diesel–battery system overview 5.3.1 Technical and nontechnical challenges 5.3.1.1 Voltage impact 5.3.1.2 Harmonics 5.3.1.3 Impacts from PV inverters 5.4 Holistic planning approach for PV–diesel–battery system 5.4.1 Addressing stakeholders’ opinion 5.4.2 Power system optimization and techno-economic analysis 5.4.3 Integrating software-based analysis 5.4.4 Power quality analysis 5.5 Integrating PV forecasting mechanism 5.5.1 PV forecasting technologies 5.5.2 Short-term PV forecasting using sky imagery mechanism 5.5.3 Developing a proprietary forecasting tool 5.6 Share of other renewable resources in the energy mix 5.7 Conclusion Acknowledgment References 6 Power electronics for hybrid energy systems 6.1 Introduction 6.2 Classification 6.3 AC bus connected HES 6.4 DC-bus connected HES 6.5 DC-side integration of HES 6.5.1 Cascaded DC-connection 6.5.2 Series DC connection 6.5.3 Parallel DC connection 6.5.4 DC-side integrated hybrid energy storage systems 6.6 Three-port converters 6.7 DC–DC converter based 6.8 High-frequency link 6.9 Neutral-point-clamped multilevel converters with multiple energy sources 6.10 Cascaded and modular multilevel converters 6.11 Solid-state transformers 6.12 Summary Acknowledgment References 7 Photovoltaic power plant planning and modeling 7.1 Introduction 7.2 Photovoltaic plant planning for hybrid microgrids 7.2.1 Load matching index 7.2.2 Photovoltaic utilization index 7.2.3 Solar irradiance variability index 7.3 Hybrid microgrid design and photovoltaic plant planning 7.3.1 Synchronous versus inverter-based grid forming 7.3.2 Centralized versus decentralized control 7.3.3 Centralized versus distributed generation 7.3.4 AC versus DC coupling 7.4 Special technical considerations for hybrid microgrids 7.4.1 Management of photovoltaic intermittency 7.4.2 Management of excess photovoltaic output 7.4.3 Frequency stability 7.4.4 System strength 7.5 Conclusion References Appendix: Standard photovoltaic plant planning considerations Site selection Photovoltaic plant layout Electrical system design Mounting system design Photovoltaic module and inverter selection Energy yield simulations Grid integration modeling Environmental and social impacts 8 Wind power plant planning and modeling 8.1 Chapter overview 8.2 Wind resource 8.2.1 Impact of the height 8.2.2 Temperature and altitude correction for air density 8.3 Types of wind turbines 8.3.1 Horizontal axis wind turbines 8.3.2 Vertical axis wind turbines 8.3.3 System elements 8.3.3.1 The rotor 8.3.3.2 The gearbox 8.3.3.3 The generator 8.3.3.4 The yaw mechanism (horizontal axis wind turbine) 8.3.3.5 The tower 8.3.3.6 The foundations 8.4 Wind energy production estimate 8.4.1 Power in the wind 8.4.2 Betz limit 8.4.3 Airfoil fundamental concepts 8.4.3.1 Lift coefficient 8.4.3.2 Drag coefficient 8.4.3.3 Drag versus lift wind turbines 8.4.4 Wind speed distribution (Weibull and Rayleigh) 8.4.5 Wind turbine energy production estimates 8.5 Wind turbine control and hybrid systems 8.5.1 Wind turbine control systems 8.5.1.1 Standard control configurations 8.5.1.2 Advanced control methods 8.5.1.3 Power control 8.5.2 Hybrid power systems 8.5.2.1 Sizing of photovoltaic/wind hybrid renewable energy system 8.5.2.2 Optimization of photovoltaic/wind hybrid renewable energy system 8.5.2.3 Reliability analysis 8.5.2.4 Performance assessment 8.5.3 Particular operating conditions for the wind power plant 8.5.3.1 Operation in extreme climatic conditions 8.5.3.2 Special purpose applications 8.5.3.2.1 Water pumping 8.5.3.2.2 Wind-powered desalination 8.6 Environmental impacts of wind energy projects 8.6.1 Visual impact of wind turbines 8.6.2 Wind turbine noise 8.6.3 Bird and bat interaction with wind turbines 8.6.4 Other impact considerations 8.7 Economic and financing aspects of wind energy projects 8.7.1 Revenues and financing of wind energy projects 8.7.1.1 Average wind energy cost 8.7.1.2 Offsetting energy use and costs 8.7.1.3 Wind energy financial incentives 8.7.1.4 Production tax credits and investment tax credits 8.7.1.5 Equity capital and tax equity 8.7.1.6 Equity sponsor 8.7.2 Economic evaluation of wind energy projects 8.7.2.1 Simple payback 8.7.2.2 Net present value 8.8 Conclusion References 9 Fuel cell and hydrogen power plants 9.1 Chapter overview 9.2 Fuel cells 9.2.1 Principle of operation 9.2.2 Construction of fuel cell stack 9.2.2.1 Electrical configuration 9.2.2.2 Physical configuration 9.2.3 Classification of fuel cell 9.2.3.1 Solid oxide fuel cell 9.2.3.2 Molten carbonate fuel cell 9.2.3.3 Phosphoric acid fuel cell 9.2.3.4 Alkaline fuel cell 9.2.3.5 Proton exchange membrane fuel cell 9.2.3.6 Direct methanol fuel cell 9.3 Hydrogen-based power plants 9.3.1 Hydrogen generation processes 9.3.1.1 Hydrogen generation from fossil fuel 9.3.1.1.1 Hydrogen from natural gas methane-steam reforming 9.3.1.1.2 Hydrogen from hydrocarbon partial oxidation 9.3.1.1.3 Hydrogen from coal gasification 9.3.1.2 Hydrogen generation from water 9.3.1.2.1 Water electrolysis 9.3.1.3 Hydrogen generation from biomass 9.3.1.4 Hydrogen generation from biological process 9.3.1.4.1 Microbial hydrogen production 9.3.1.4.2 Photobiological hydrogen production 9.3.2 Large scale stationary power plants 9.3.3 Hybrid distributed generation systems 9.3.3.1 FC as main power source in DG 9.3.3.2 FC as auxiliary power source in DG 9.3.4 Combined heat and power systems 9.4 FC energy system modeling 9.4.1 Fuel cell 9.4.2 DC–DC converter 9.4.3 Controller design 9.4.4 Simulation results 9.4.4.1 Results with constant resistive load 9.4.4.2 Results with variable resistive load 9.5 Conclusion 9.6 Nomenclature References 10 Hybrid energy storage systems 10.1 Chapter overview 10.2 Hybrid energy storage system configuration classification 10.2.1 Passive configuration 10.2.2 Semiactive configuration 10.2.3 Series-active configuration 10.2.4 Parallel-active configuration 10.3 Control strategies for hybrid energy storage system configurations 10.4 Control of microgrid configuration based on solar photovoltaic–wind turbine, and hybrid energy storage system 10.4.1 Control of wind turbine 10.4.2 Control of solar photovoltaic 10.4.3 Control of Ni–Cd batteries 10.4.4 Control of SCs 10.4.5 Control of the interfacing inverter 10.4.5.1 Control for standalone operation mode 10.4.5.2 Control for grid-connected mode 10.5 Results and discussion 10.5.1 Performance at the DC bus 10.5.2 Performance at the AC bus 10.6 Conclusion References 11 Control systems for hybrid energy systems 11.1 Chapter overview 11.2 Configuration of HES-based MG 11.2.1 AC/DC hybrid-MG configurations based on two ESs 11.2.2 AC/DC hybrid-MG configurations based on three ESs 11.2.3 AC/DC hybrid-MG configuration based on four ESs 11.3 AC/DC hybrid-MG configuration under study 11.3.1 Operation modes of selected AC/DC hybrid-MG configuration 11.4 Control for AC/DC hybrid-MG configuration 11.4.1 Hierarchical control 11.4.1.1 Primary control 11.4.1.1.1 Control of the variable speed wind turbine 11.4.1.1.2 Control of the solar photovoltaic system 11.4.1.1.3 Control of the variable speed diesel generator 11.4.1.1.4 Control battery storage system 11.4.1.1.5 Control of the AC/DC interfacing inverter 11.4.1.2 Secondary control 11.4.1.3 Tertiary control 11.5 Results and discussion 11.6 Conclusion References 12 Microgrids and their control 12.1 Introduction 12.2 Primary controllers of DDERs and BESs 12.2.1 DDER’s primary controller 12.2.2 Battery energy storage systems’ primary controller 12.3 Microgrid’s secondary controller 12.3.1 Dynamic power ratio adjustment 12.3.2 Droop curve adjustment 12.3.3 Selection of a suitable internal balancing inductance 12.3.4 Corrective controller 12.3.5 Preventive controller 12.4 Network’s tertiary controller 12.4.1 Self-healing capability 12.4.2 Coupling of two microgrids 12.4.3 Coupling of more than two microgrids 12.4.3.1 Decision-making approach 12.4.3.2 Optimization approach References 13 Demand-side management 13.1 Chapter overview 13.2 Demand-side management 13.2.1 Demand-side management categories 13.2.1.1 Energy efficiency 13.2.1.2 Demand response 13.2.1.3 Virtual power plants 13.2.1.4 Spinning reserve 13.2.2 Demand-side management stakeholders 13.2.3 Demand-side management drivers and benefits 13.2.4 Demand-side management cost-effectiveness 13.3 Demand response 13.3.1 Price-based demand-response programs 13.3.2 Incentive-based demand-response programs 13.3.3 Potential benefits 13.3.4 Limitation and barriers 13.4 Advanced demand-side management technologies 13.4.1 Smart loads and smart grids 13.4.2 Internet of Things 13.4.3 Blockchain-based demand-side management programs 13.5 Conclusion References Index