دسترسی نامحدود
برای کاربرانی که ثبت نام کرده اند
برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید
در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید
برای کاربرانی که ثبت نام کرده اند
درصورت عدم همخوانی توضیحات با کتاب
از ساعت 7 صبح تا 10 شب
ویرایش: [1 ed.] نویسندگان: Mehdi Mehrpooya, Majid Asadnia, Amir Hossein Karimi, Ali Allahyarzadeh-Bidgoli سری: Hybrid Energy Systems ISBN (شابک) : 9780323983662, 0323983662 ناشر: Academic Press سال نشر: 2023 تعداد صفحات: 670 زبان: English فرمت فایل : PDF (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود) حجم فایل: 60 Mb
در صورت ایرانی بودن نویسنده امکان دانلود وجود ندارد و مبلغ عودت داده خواهد شد
در صورت تبدیل فایل کتاب Hybrid Poly-generation Energy Systems: Thermal Design and Exergy Analysis به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.
توجه داشته باشید کتاب سیستمهای انرژی ترکیبی چند نسل: طراحی حرارتی و تجزیه و تحلیل اگزرژی نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.
Hybrid Poly-generation Energy Systems: Thermal Design and Exergy Analysis provides an analysis of the latest technologies and concepts of hybrid energy systems, focusing on thermal applications. The book guides readers through an introduction to hybrid poly-generation systems and the storage options available before working through the types of hybrid systems, including solar, fuel cells, combustion, and heating and cooling. An analysis of the economic and environmental impact of each system is included, as well as methods and approaches for exergy and energy improvement analysis. This book can be used as a tool for understanding new concepts in this emerging field and as a reference for researchers and professionals working on the integrated cogeneration of power systems. Guides the reader through hybrid processes they can apply to their own system designs Explains operational processes and includes multiple examples of optimization techniques Includes renewable energy sources, CO2 capturing processes in combined systems and advanced exergy analysis methods
Cover image Title page Table of Contents Copyright 1. What does it mean? Hybrid polygeneration systems Abstract 1.1 Background 1.2 Definition and classification of hybrid polygeneration systems 1.3 Objectives and necessity of using hybrid polygeneration systems References 2. How to use renewable energy sources in polygeneration systems? Abstract 2.1 Introduction 2.2 Proposed process frameworks for solar polygeneration systems 2.3 Solar power plant 2.4 Solar thermochemical reactors 2.5 Wind energy-based polygeneration systems 2.6 Hydrogen production by a multipurpose cycle consisting of wind turbine and heliostats 2.7 Conceptual configuration of using wind energy and geothermal energy to produce hydrogen chloride 2.8 Multipurpose combinations of wind and solar energy for power and refrigeration generation, energy storage, water desalination, food drying, and water electrolysis 2.9 CO2 capturing using wind energy in a multiproduction energy system 2.10 Geothermal energy and polygeneration systems 2.11 Biomass energy used in polygeneration systems 2.12 How to combine hydroenergy systems and polygeneration systems? 2.13 Hybrid power generation of hydropower 2.14 Polygeneration systems that use wave energy resources References 3. Energy storage type and size in PGSs Abstract 3.1 Introduction 3.2 Operational possible ways for thermal energy storage in PGSs 3.3 Benefits and limitations of mechanical energy storage in PGSs 3.4 Proposed process configurations for electrochemical energy storage in PGSs 3.5 How to store electrical energy in PGSs? References 4. Exergy, energy, environmental and economic analysis of hybrid poly-generation systems: methods and approaches Abstract 4.1 Introduction 4.2 The concept of exergy 4.3 Preliminary and advanced environmental analysis of PGs 4.4 Preliminary and advanced economic analysis of PGSs References 5. Solar-based hybrid energy systems Abstract 5.1 Introduction 5.2 Power production by solar PGSs 5.3 Heating production by solar PGSs 5.4 Cooling production by solar PGSs 5.5 Hydrogen production by solar PGSs References 6. Technical and economic prospects of fuel cells combination with polygeneration systems? Abstract 6.1 Fuel cell 6.2 Electrolyze 6.3 SOFCs in polygeneration systems References 7. Biomass-based hybrid energy systems Abstract 7.1 Introduction 7.2 Thermochemical biomass gasification combined processes 7.2.3 Hybrid biomass energy systems to produce power 7.2.4 Tri-generation and integration of cold, heat, and power by biomass-based hybrid systems 7.2.5 Proposed systems for hybrid solar and biomass power plants References 8. Chemical looping combustion in polygeneration systems Abstract 8.1 Introduction 8.2 Fuel cell 8.3 Solid oxide fuel cell 8.4 Proton exchange membrane fuel cells 8.5 Expander power process 8.6 Vapor (or steam) power cycle 8.7 Gas and combined power cycles 8.8 Heat recuperation 8.9 Two reactor conversion process configurations References 9. A framework for sustainable hydrogen production by polygeneration systems Abstract 9.1 Introduction 9.2 High-temperature hybrid electrolyzers 9.3 Biomass and photobiological processes to produce hydrogen 9.4 GS reactor temperature effect on hydrogen production rate 9.5 Sulfuric acid system References 10. Integration of oxyfuel power plants in polygeneration systems Abstract 10.1 Integration of oxyfuel power plants 10.2 Energy and exergy analysis of integrated oxyfuel hybrid power plants 10.3 Environmental and economic analysis of oxyfuel hybrid power plants References 11. Basic power and cooling production systems in combination with polygeneration systems to trigeneration of cold, heat, and power Abstract 11.1 Basic power and cooling production systems 11.2 Thermoelectric/thermionic generators in polygeneration systems 11.3 Stirling engines and polygeneration systems 11.4 ORCs in polygeneration systems 11.5 Joule–Brayton refrigeration processes in combination with polygeneration systems 11.6 Cryogenic air separation 11.7 Absorption refrigeration-based polygeneration systems References 12. Integration of carbon dioxide capturing processes in hybrid energy systems Abstract 12.1 Integration of carbon dioxide capturing processes 12.2 Absorption-based postcombustion capture of carbon systems and polygeneration systems 12.3 Exergy and energy analysis of hybrid CCSs 12.4 Environmental and economic analysis of hybrid CCSs References 13. Why advanced analyses? Abstract 13.1 Introduction 13.2 Advanced economic, environmental, and exergy analyses of polygeneration systems 13.3 Advanced method procedure 13.4 Accessible and inaccessible sector variables and assessment 13.5 Avoidable and unavoidable sector variables and assessment 13.6 Benefits and disadvantageous of advanced analysis methodology for energy systems References Index