ورود به حساب

نام کاربری گذرواژه

گذرواژه را فراموش کردید؟ کلیک کنید

حساب کاربری ندارید؟ ساخت حساب

ساخت حساب کاربری

نام نام کاربری ایمیل شماره موبایل گذرواژه

برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید


09117307688
09117179751

در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید

دسترسی نامحدود

برای کاربرانی که ثبت نام کرده اند

ضمانت بازگشت وجه

درصورت عدم همخوانی توضیحات با کتاب

پشتیبانی

از ساعت 7 صبح تا 10 شب

دانلود کتاب Hybrid Energy Systems: Strategy for Industrial Decarbonization

دانلود کتاب سیستم های انرژی هیبریدی: استراتژی برای کربن زدایی صنعتی

Hybrid Energy Systems: Strategy for Industrial Decarbonization

مشخصات کتاب

Hybrid Energy Systems: Strategy for Industrial Decarbonization

ویرایش:  
نویسندگان:   
سری:  
ISBN (شابک) : 9781003159421, 9780367747572 
ناشر: CRC Press 
سال نشر: 2021 
تعداد صفحات: 559 
زبان: English 
فرمت فایل : PDF (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود) 
حجم فایل: 10 مگابایت 

قیمت کتاب (تومان) : 50,000



ثبت امتیاز به این کتاب

میانگین امتیاز به این کتاب :
       تعداد امتیاز دهندگان : 17


در صورت تبدیل فایل کتاب Hybrid Energy Systems: Strategy for Industrial Decarbonization به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.

توجه داشته باشید کتاب سیستم های انرژی هیبریدی: استراتژی برای کربن زدایی صنعتی نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.


توضیحاتی در مورد کتاب سیستم های انرژی هیبریدی: استراتژی برای کربن زدایی صنعتی

این کتاب نشان می‌دهد که چگونه انرژی و فرآیندهای ترکیبی می‌توانند نیازهای صنعت انرژی برای نیرو، گرمایش و سرمایش را کربن‌زدایی کنند. این کتاب نقش انرژی و فرآیندهای هیبریدی را در 9 بخش اصلی صنعت توصیف می‌کند و در مورد اینکه چگونه انرژی هیبریدی می‌تواند راه‌حل‌های پایدار را در هر یک ارائه دهد، بحث می‌کند. بخش‌ها شامل زغال سنگ، نفت و گاز، هسته ای، ساختمان، وسیله نقلیه، فرآیندهای تولید و صنعتی، محاسبات و الکترونیک قابل حمل، گرمایش و سرمایش منطقه ای و آب. این کتاب برای دانشجویان پیشرفته، محققان و متخصصان صنعت درگیر در فرآیندهای مرتبط با انرژی و گیاهان نوشته شده است. ارائه آخرین تحقیقات و استراتژی های عملی برای بکارگیری حوزه نوآورانه انرژی هیبریدی "--


توضیحاتی درمورد کتاب به خارجی

"This book demonstrates how hybrid energy and processes can decarbonize energy industry needs for power and heating and cooling. It describes the role of hybrid energy and processes in nine major industry sectors and discusses how hybrid energy can offer sustainable solutions in each. Sectors include coal, oil and gas, nuclear, building, vehicle, manufacturing and industrial processes, computing and portable electronic, district heating and cooling and water. Written for advanced students, researchers, and industry professionals involved in energy-related processes and plants, this book offers latest research and practical strategies for application of the innovative field of hybrid energy"--



فهرست مطالب

Cover
Half Title
Series Page
Title Page
Copyright Page
Dedication
Table of Contents
Preface
Author
Chapter 1 Hybrid Energy Systems—Strategy for Decarbonization
	1.1 Introduction
	1.2 Hybrid Energy Systems Defined
	1.3 Examples of Hybrid Energy Systems
		1.3.1 Hybrid Solar-Wind Renewable Systems
		1.3.2 Combined Heat and Power Hybrid Energy System
	1.4 Outline of the Book
	References
Chapter 2 Hybrid Energy Systems for Building Industry
	2.1 Introduction
		2.1.1 Concept of Zero-Energy Buildings
		2.1.2 Grid Connection
		2.1.3 Fuel Switching
		2.1.4 Renewable Energy Credits
		2.1.5 Energy Supply Options and Priorities
	2.2 Customer Automation and Energy Management Systems
		2.2.1 Dynamic Pricing and Demand Response
		2.2.2 Process for Renewable Energy Building Connection to the Electrical Grid
	2.3 Role of Hybrid Energy Systems in Net Zero-Energy Buildings
	2.4 Solar Thermal with Storage
		2.4.1 Solar-Boosted Heat Pump
		2.4.2 Building Integrated Solar Thermal Technologies and Their Applications
	2.5 Solar Electric PV with Storage
	2.6 Hybrid PV/Solar Thermal Concept
	2.7 Building-Integrated Options (BiPVT/a)
		2.7.1 Works on Window Systems
			2.7.1.1 Building-Integrated Window Systems (BiPVT/w)
		2.7.2 Heat-Pump Integration (PVT/Heat Pump)
		2.7.3 PVT-Integrated Heat Pipe
		2.7.4 PVT Trigeneration
		2.7.5 Commercial Aspects
	2.8 Solar PVT with Geothermal Heat Pump
	2.9 PV/Wind/Storage Hybrid Energy System
		2.9.1 Pros and Cons of Hybrid PV-Wind Energy Systems
		2.9.2 Theoretical Case Studies for PV-Wind Hybrid Energy System
	2.10 Other Issues and Innovations for Hybrid Energy for Buildings
		2.10.1 Hybrid Electric Building Design
		2.10.2 Hybrid Energy Modules for Improving Building Efficiency in the Future Electric Grid
		2.10.3 Economics of Renewable Hybrid System for Residential Purpose
	References
Chapter 3 HESs for Carbon-Free District Heating and Cooling
	3.1 Introduction
		3.1.1 Drivers for DHC
	3.2 Small Hybrid Fossil-Renewable Heating and Cooling Grids
	3.3 DH by Biomass Based HES
		3.3.1 DH with CHP
		3.3.2 Some Examples of Hybrid Biomass-Based DH in Europe
		3.3.3 Hybrid-Solar-Biomass DH
	3.4 Hybrid Geothermal DH
		3.4.1 Hybrid Modular Geothermal Heat Pump for District Heating
		3.4.2 Solar Thermal Recharge and Sewer Heat Recovery
		3.4.3 The Multisource Hybrid Concept
	3.5 Decarbonizing District Heating with Hybrid Solar Thermal Energy
	3.6 District Heating with Hybrid Wind Energy
	3.7 District Heating with Small Modular Nuclear Reactors by Hybrid Process of Cogeneration
		3.7.1 Global Assessment of Modular Nuclear Heat-Based District Heating
	3.8 District Heating by Hybrid Industrial Waste Heat
	3.9 Optimization Models for Hybrid District Heating Systems
	3.10 Role of TES in District Heating
		3.10.1 Energy Central
	3.11 Hybrid DE in US
		3.11.1 Examples of Use of DE in US
	References
Chapter 4 Hybrid Energy Systems for Vehicle Industry
	4.1 Introduction
	4.2 Hybrid Energy in Maritime Industry
		4.2.1 Boats, Yachts, and Ferries
		4.2.2 Role of Renewable Sources in Shipping Industry
		4.2.3 Hybrid Ships and Roles of Renewable Sources and Energy Storage
		4.2.4 Energy Storage and Usage in Ships
		4.2.5 GE Naval Vessel Electrification
		4.2.6 Hybrid Energy for Large Ships
		4.2.7 Use of Hybrid Microgrids for Ships
		4.2.8 Future Marine Power Systems
			4.2.8.1 Maritime Microgrids
		4.2.9 Hybrid Power Module
		4.2.10 Hybrid Fuel Cell-Based Ships
	4.3 Hybrid Energy for Air Vehicles
		4.3.1 Hybrid Aircraft
		4.3.2 Unmanned Aerial Vehicles
		4.3.3 Manned Solar Aircraft
		4.3.4 Solar Electric, Hybrid, and Hydrogen Aircraft
		4.3.5 Integrated EMS for Hybrid Electric Aircraft
	4.4 Hybrid Trains and Railways
		4.4.1 Solar-Powered Train System
		4.4.2 Hybrid Electric Railway
		4.4.3 Energy Storage Technology for Hybrid Electric Railway
	References
Chapter 5 Hybrid Energy Systems for Coal Industry
	5.1 Introduction
	5.2 Coal-Based Hybrid Power Plants
		5.2.1 Cocombustion of Coal and Biomass
		5.2.2 Cofiring Coal-Natural Gas
			5.2.2.1 Options for Natural Gas Addition
		5.2.3 Coal-Solar Hybrid for Power and Fuels
			5.2.3.1 Advantages of Coal-Solar Hybridization
			5.2.3.2 Disadvantages of Coal-Solar Hybridization
		5.2.4 Role of Wind Energy
		5.2.5 Carbon Capture from Biomass and Cofired Plants
		5.2.6 Conversion of Carbon Dioxide to Power by Fuel Cell Technology or to Diesel Fuel
		5.2.7 Combined Cycle to Improve Efficiency
		5.2.8 Conversion of Waste Heat to Power or Additional Industrial Use
	5.3 Coal-Biomass Cogasification
	5.4 Hybrid Power by IGCC Plants
		5.4.1 Commercial Cogasification IGCC Plants
			5.4.1.1 ELCOGAS IGCC Plant, Puertollano, Spain
			5.4.1.2 The Willem Alexander IGCC Plant, Buggenum, The Netherlands
			5.4.1.3 Polk IGCC Plant, Florida, USA
		5.4.2 Other Cogasification Projects and Proposals
	5.5 Liquid Synthetic Fuels by Cogasification
	5.6 Hybrid Energy Systems for Coal to Chemicals
		5.6.1 Nuclear-Coal Integration System
		5.6.2 Wind/Solar-Coal Integration System
		5.6.3 Biomass-Coal Integration System
		5.6.4 Carbon Tax Impact on the Economic Competitiveness of Hybrid Energy System
		5.6.5 Carbon-Neutral Cycle via CO[sub(2)] Capture and Conversion System
	5.7 Novel Hybrid Processes Combining Coal/Biomass to Chemicals and Hydrogen Production
		5.7.1 NREL Hybrid Concepts (USA) (Gasification/ Cogasification + Electrolysis)
		5.7.2 CRL Energy, New Zealand (Coal/Biomass Cogasification + Electrolysis)
		5.7.3 Other Hybrid Projects for Chemicals and Hydrogen
	References
Chapter 6 Hybrid Energy Systems for Nuclear Industry
	6.1 Introduction
	6.2 Diversity of Hybrid Energy Systems
	6.3 Nuclear-Renewable Hybrid Energy Systems
	6.4 Nature of Interactions in Components of N-RES Hybrid Energy Systems
		6.4.1 Tightly Coupled N-R HES for Power and Heat
		6.4.2 Thermal Interconnections of Components of N-RES Hybrid Energy Systems
		6.4.3 Electricity Interconnections of Components of N-RES Hybrid Energy Systems
		6.4.4 Chemical Interconnections of Components of N-RES Hybrid Energy Systems
		6.4.5 Hydrogen Interconnections of Components of N-RES Hybrid Energy Systems
		6.4.6 Mechanical Interconnections of Components of N-RES Hybrid Energy Systems
		6.4.7 Information Interconnections of Components of N-RES Hybrid Energy Systems
		6.4.8 System-Level Considerations for N-R HES Development
	6.5 Industrial Applications of N-R HES
	6.6 Tools Required for Successful N-R HES Applications
		6.6.1 Dynamic Modeling Tools for N-R HES Impact Assessment, Design Optimization, and Nuclear Reactor Design Studies
		6.6.2 Thermal Hydraulics and Electricity Interconnections
		6.6.3 Power Generation and Storage Systems
		6.6.4 Control, Safety, Security, and Licensing
	6.7 Case Studies
		6.7.1 Case Studies 1 and 2: West Texas Synthetic Gasoline and Arizona Desalination Plant
		6.7.2 Case Study 3: N-R HES for Hydrogen Production
	References
Chapter 7 Hybrid Energy Systems for Manufacturing Industry
	7.1 Introduction
	7.2 Methods for Improving Energy Efficiency by HESs
		7.2.1 Process Heating Systems (Including Steam for Unit Operations)
		7.2.2 Motor-Driven Systems
		7.2.3 Process Intensification
	7.3 Hybrid Energy Systems Which Include Waste Heat Recovery and Conversion
		7.3.1 CHP Systems
		7.3.2 Cogeneration Using Nuclear Heat
		7.3.3 Options for Waste Heat to Power
			7.3.3.1 Thermodynamic Cycles
			7.3.3.2 Thermoelectric Power
			7.3.3.3 Thermophotovoltaic Devices
			7.3.3.4 Thermionic Devices
			7.3.3.5 Piezoelectric Devices
			7.3.3.6 Heat Pumps for Process Heat
	7.4 Role of Biomass Systems for Industrial Processes
		7.4.1 Biomass-Based Hybrid Systems
	7.5 Role of Geothermal Energy
		7.5.1 Vapor Recompression
		7.5.2 Geothermal Heat for Chemical Industry
	7.6 Role of Hybrid Solar Thermal Energy
		7.6.1 Solar Cooling
	7.7 Potential of Renewable Energy Technologies for Industrial Electricity Use
	7.8 Realizable Economic Potential of Renewable Energy Integration
		7.8.1 Priority Areas of Action
	7.9 Reduction in GHG Emission by Clean Energy Alternatives
	7.10 Closing Perspectives
	References
Chapter 8 Hybrid Energy Systems for O&G Industries
	8.1 Introduction
	8.2 Drivers for Hybrid Renewable Energy Systems for Oil and Gas Industry
		8.2.1 Depletion of High-Quality Oil Reserves
		8.2.2 Environmental Concerns in the O&G Industry
		8.2.3 Falling Renewable Energy Costs
	8.3 Challenges to Renewable Integration
		8.3.1 Variability of Generation
		8.3.2 System Reliability
		8.3.3 Operational Considerations
		8.3.4 Government Policies
	8.4 Hybrid Systems
		8.4.1 Evaluation and Successful Case Studies
	8.5 Hybrid Power Systems for Offshore Units
	8.6 Upstream: Renewable Integration in Oil and Gas Production
		8.6.1 Electrification of Drilling and Primary Recovery
		8.6.2 Use of Hybrid Renewable-Energy-Powered Secondary Recovery
		8.6.3 Concentrating Solar and Geothermal Heat for Tertiary Recovery (EOR)
		8.6.4 Examples of Successful Case Studies
			8.6.4.1 Photovoltaic Hybrid Systems
			8.6.4.2 Wind Power Systems
			8.6.4.3 Use of Geothermal Energy
			8.6.4.4 Solar Thermal Systems
		8.6.5 Closing Perspectives
	8.7 Midstream: Integration of Hybrid Renewable Energy Systems in Oil and Gas Transportation
		8.7.1 Compressor Electrification, Heat Recovery, and Use of Turbo Expanders
	8.8 Downstream: Integration of Hybrid Renewable Energy Systems in Oil Refining
		8.8.1 Cogeneration (Heat and Power) and Use of Hybrid Renewable Energy Systems
		8.8.2 Hydrogen Production
		8.8.3 Other Efforts to Hybridized Oil and Gas with Renewable Energy
	8.9 Perspectives on Use of Renewable Energies for Oil
	8.10 Natural Gas-Renewable Sources Hybrid Systems
		8.10.1 Temporal Framework
		8.10.2 Collaborative Market Redesign
		8.10.3 Perspectives on Low- and Zero-Emission Hybrid Generation
		8.10.4 Role of Storage in Hybrid Generation
		8.10.5 Low-Carbon Renewable Fuel Storage and Transmission
		8.10.6 Renewable Fuel Injection in the Grid
	References
Chapter 9 Hybrid Energy Systems for Computing and Electronic Industries
	9.1 Introduction
	9.2 The Case of Hybrid Approach for Data Centers
	9.3 Hybrid Processes to Improve Energy Efficiency of Data Centers
	9.4 Role of Hybrid Renewable Energy for Data Centers
		9.4.1 Technology Capabilities
		9.4.2 Implementation Challenges
		9.4.3 Benefits
		9.4.4 Hybrid Renewable Energy Green-Works Framework for Data Centers
			9.4.4.1 Hybrid Renewable Energy Systems
			9.4.4.2 Energy Balance Challenge
			9.4.4.3 The Green Works Framework
	9.5 Hybrid Storage Devices for Data Centers
	9.6 Forms of Hybrid Energy in Data Centers
		9.6.1 Heat Integration
		9.6.2 Demand Response
		9.6.3 Innovative Use of Backup Power
	9.7 Hybrid Energy Harvesting for Portable Electronics
		9.7.1 Hybrid, Multisource Energy Harvesters
			9.7.1.1 Magnetic and Kinetic Energy
			9.7.1.2 Kinetic and Solar Energy
			9.7.1.3 Wind and Thermal Energy
			9.7.1.4 Solar, Kinetic, and Radio Frequency Energy
			9.7.1.5 HCs for the Harvesting of Solar and Mechanical Energy
			9.7.1.6 HCs for the Harvesting of Biomechanical and Biochemical Energy
			9.7.1.7 HCs for the Harvesting of Solar and Thermal Energy
			9.7.1.8 Hybrid Energy via Microscale Waste Heat Applications
			9.7.1.9 Harvester-Sensor Integrations
		9.7.2 Self-Powered Hybrid Micro-/Nanosystems
	9.8 Energy Harvesters Integrated with Energy Storage AND/OR End Users
		9.8.1 Harvester-Storage Integrations
		9.8.2 Hybrid Nanogenerators
		9.8.3 Wearable Devices of ESSs and Nanogenerators
		9.8.4 CMOS Technology-Based Harvesters and Systems
	9.9 Hybrid Energy Storage for Low-Power Embedded Systems Applications
		9.9.1 Integrating Faradaic and Capacitive Storage Mechanisms
	9.10 Power Electronics for Renewable Energy Systems
		9.10.1 DC-to-DC Converters
		9.10.2 Inverters
	References
Chapter 10 Hybrid Energy Systems for Water Industry
	10.1 Introduction
	10.2 Desalination
		10.2.1 Desalination Process Alternatives
		10.2.2 Efficiency Improvement through Hybrid Processes
		10.2.3 Role of Renewable Energy in Desalination
	10.3 Hybrid Solar Energy for Desalination
		10.3.1 Solar-Thermal Systems
			10.3.1.1 Direct Solar Thermal Desalination
			10.3.1.2 Indirect Solar Thermal Desalination
			10.3.1.3 Perspectives on Pilot and Commercial Scale Operations
		10.3.2 Solar PV-Based Application
		10.3.3 Hybrid Solar Thermal-Solar PV
	10.4 Hybrid Wind Energy for Desalination
	10.5 Hybrid Geothermal Energy for Desalination
	10.6 Hybrid Wave Energy
		10.6.1 Barge-Wave and Below Water Energy Conversion
	10.7 Desalination by Cogeneration by Small Modular Nuclear Reactors
	10.8 Future Prospects of Desalination by Hybrid Renewable Energy Sources and Cogeneration Processes
	10.9 Hybrid Energy Systems for Wastewater Treatment
	10.10 Future Role of MFC for Wastewater Treatment
	References
Chapter 11 Hybrid Energy Systems for Hydrogen Production
	11.1 Introduction
	11.2 Role of Biomass for Hydrogen Production
	11.3 Biomass-Based Hybrid Systems
		11.3.1 Coal-Biomass
		11.3.2 Wastewater Treatment—Biomass
		11.3.3 Concentrated Solar—Biomass
		11.3.4 Nuclear—Biomass
		11.3.5 Fuel Cell-Biomass
		11.3.6 Electrolysis—Biomass
		11.3.7 Wind—Biomass
		11.3.8 Industrial Waste Heat-Biomass Hybridization
	11.4 Hybrid Biomass Systems Recommended by NREL
	11.5 Indirect Gasifier Hybrid System
		11.5.1 Peaking Modifications
	11.6 Direct Gasifier Hybrid System
	11.7 Hybrid Energy Systems for Hydrogen Production by Electrolysis
		11.7.1 Hybrid Renewable (Wind, Solar) Electrolysis
		11.7.2 Commercial-Scale Hybrid Nuclear Heat- Based HTE
	11.8 Economic Aspects of Green Hydrogen Production
	References
Index




نظرات کاربران