دسترسی نامحدود
برای کاربرانی که ثبت نام کرده اند
برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید
در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید
برای کاربرانی که ثبت نام کرده اند
درصورت عدم همخوانی توضیحات با کتاب
از ساعت 7 صبح تا 10 شب
ویرایش:
نویسندگان: Carsten Röcker. Sebastian Büttner
سری:
ISBN (شابک) : 3030992349, 9783030992347
ناشر: Springer
سال نشر: 2022
تعداد صفحات: 398
[399]
زبان: English
فرمت فایل : PDF (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود)
حجم فایل: 12 Mb
در صورت تبدیل فایل کتاب Human-Technology Interaction: Shaping the Future of Industrial User Interfaces به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.
توجه داشته باشید کتاب تعامل انسان و فناوری: شکل دادن به آینده رابط های کاربری صنعتی نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.
دیجیتال سازی و اتوماسیون منجر به تغییرات اساسی در چشم انداز صنعتی می شود. در کشورهای آلمانی زبان، این پیشرفت اغلب تحت عنوان Industry 4.0 خلاصه می شود. همزمان، فناوریهای تعاملی در دهههای اخیر پیشرفتهای عظیمی را ایجاد کردهاند. استفاده از دستگاههای تلفن همراه و صفحهنمایشهای لمسی در همه جا وجود دارد، فناوریهای واقعیت افزوده و واقعیت مجازی راه خود را به بازار باز کرده و مفاهیم تعاملی جدیدی ایجاد شده است. در حالی که فناوریهای تعاملی جدید امکانات جدیدی را برای سازماندهی یا اجرای کار در زمینه صنعت 4.0 ارائه میدهند، دگرگونی فرآیندهای صنعتی نیز نیاز به شیوههای کاری جدید را ایجاد میکند.
این کتاب باعث میشود. تأثیر متقابل Industry 4.0 و فناوری های تعاملی جدید. این مقاله مقالات پژوهشی منتخب را با موضوع تعامل انسان و فناوری در زمینه صنعت 4.0 ارائه می دهد. محققان رشتههای مختلف وضعیت فعلی تحقیقات را با توجه به تعاملات آتی با محیطهای تولید ارائه میکنند تا دیدگاه مشترکی در مورد چگونگی طراحی تعاملات آینده در حوزه صنعتی ایجاد کنند.
در این مقاله زمینه، موضوعات مختلفی پوشش داده شده است: مروری دقیق بر سیستم های کمکی برای پشتیبانی از کار دستی، از جمله جنبه های فن آوری و طراحی و همچنین استراتژی های پیاده سازی ارائه شده است. موارد استفاده صنعتی برای فناوریهای واقعیت توسعهیافته (XR) مانند واقعیت افزوده و واقعیت مجازی (AR و VR) ارائه شده است، همچنین جنبههایی از نحوه نگارش محتوا در محیطهای XR را پوشش میدهد. نقش شیوه های کاری جدید، به عنوان مثال، با ارائه مفاهیم گیمیفیکیشن و کار گروهی انسان و ماشین برای حمایت از رفاه مورد بررسی قرار می گیرد. در نهایت، موضوعات اعتماد و پذیرش فناوری در زمینه صنعت 4.0 مورد بحث قرار می گیرد. با توجه به این چشم انداز وسیع، چشم اندازی از چگونگی طراحی تعاملات انسان و فناوری آینده به گونه ای ترسیم می شود که پتانسیل کامل فنی و انسانی آنها را تحقق بخشد.
Digitalization and automation are leading to fundamental changes in the industrial landscape. In the German-speaking countries, this development is often summarized under the term Industry 4.0. Simultaneously, interaction technologies have made huge developments in the last decades. The use of mobile devices and touch screens is ubiquitous, augmented and virtual reality technologies have made their way into the market and new interaction concepts have become established. While new interaction technologies offer new possibilities for organizing or executing work in the context of Industry 4.0, the transformation of industrial processes also creates a need for new work practices.
This book sheds light on the interplay of Industry 4.0 and new interaction technologies. It presents selected research articles on the topic of Human-Technology Interaction in the context of Industry 4.0. Researchers from various disciplines present the current state of research with regard to future interactions with production environments to develop a common vision of how to design future interactions in the industrial domain.
In this context, various topics are covered: a detailed overview on assistive systems for supporting manual work is given, including technological and design aspects as well as implementation strategies. Industrial use-cases for extended reality (XR) technologies such as augmented and virtual reality (AR and VR) are presented, also covering aspects of how to author content in XR environments. The role of new work practices is examined, for example, by presenting concepts of gamification and human-machine teamwork for supporting well-being. Finally, topics of trust and technology acceptance are discussed in the context of Industry 4.0. Given this broad perspective, a vision is sketched of how to design future human-technology interactions in a way that realizes their full technical and human potential.
Contents Contributors 1: Human-Technology Interaction in the Context of Industry 4.0: Current Trends and Challenges 1.1 Introduction 1.2 Toward Industry 4.0 1.3 Human-Technology Interaction Perspectives on Industry 4.0 1.3.1 Technical Innovations 1.3.1.1 Touch Interfaces 1.3.1.2 Natural User Interfaces (NUI) 1.3.1.3 Extended Reality (XR) User Interfaces 1.3.2 Application Areas 1.3.2.1 Manufacturing 1.3.2.2 Logistics 1.3.2.3 Maintenance and Repair 1.3.2.4 Training 1.4 Research Challenges and Contributions in this Collection 1.4.1 How Can Assistance Systems Be Implemented and Integrated into the Work Process? 1.4.2 How Can XR Technology Support Future Work? 1.4.3 Will Work Become more Human-Centered due to New Technology? 1.4.4 How Can Technology Acceptance and Trust Within Industry 4.0 Systems Be Achieved? 1.5 Conclusion References 2: Digital Assembly Assistance Systems: Methods, Technologies and Implementation Strategies 2.1 Background 2.2 Strategies for the Successful Implementation and Institutionalization of Digital Assistance and Learning Systems 2.2.1 Objectives of a Successful Implementation Process 2.2.2 Challenges in the Implementation Process 2.2.3 Strategies for Implementation and Institutionalization 2.2.3.1 Overview: Participatory Design Strategies 2.2.3.2 Process Design Phases 2.2.3.3 Guiding Questions for Self-Review and Contextual Review 2.2.3.4 Guiding Questions for Process Design 2.3 Human Factors Design of the Technological Solution and the Adjacent Work Processes 2.3.1 Individual and Organizational Parameters 2.3.2 Technological and Educational Design Dimensions 2.3.3 Using the Methodology 2.3.4 Designing Digital Assistance Systems Conducive to Learning 2.4 Implementing Innovative Assistance, Inspection and Learning Technologies 2.4.1 HCI Technologies for User and Context Awareness 2.4.1.1 Data Acquisition Pipeline for Contextually Relevant Information 2.4.1.2 Complex Event Processing as Central Building Block 2.4.2 HCI for Ergonomic Assistance 2.4.2.1 Method of Detecting Poor Ergonomic Posture Working Zone Working Posture Working Angle Working Position 2.4.2.2 Ergonomic Feedback for Employees 2.4.3 HCI for Quality Assurance 2.4.3.1 Current Clamping System Assembly Situation 2.4.3.2 Clamping System Assembly Solution 2.4.3.3 AR Technology as the Outcome of Systematic Technology Selection 2.4.3.4 Systems Design and Use 2.4.3.5 Findings 2.5 Conclusion and Outlook 2.5.1 Conclusion 2.5.2 Outlook References 3: Cognitive Operator Support in the Manufacturing Industry - Three Tools to Help SMEs Select, Test and Evaluate Operator Supp... 3.1 Introduction: Outline of the Chapter 3.2 Industry 4.0 and the Augmented Worker 3.2.1 Developments Leading to an Interest in Cognitive Operator Support 3.2.1.1 Zero Defect and First Time Right for High-Mix Low-Volume and High-Complexity Manufacturing 3.2.1.2 Travel Restrictions from COVID-19 Pandemic 3.2.1.3 Employment: Personnel Shortages and Inclusiveness 3.2.1.4 SME´s Technology Position 3.3 Operator Support (OS) Canvas Workshop as a Selection Guide 3.3.1 OS-Canvas in Short 3.3.2 Technology: What Kind of Technologies Are Available? 3.3.3 Filling in the Canvas 3.3.3.1 Goal: Why Implement a New Way of Providing Work Instructions? 3.3.3.2 Target Group: Who Is It for? 3.3.3.3 Process in Scope: Which Process Steps Are Reviewed in the Canvas Session? 3.3.3.4 Process Description: What Are the Process Steps? 3.3.3.5 Information Needs: What Is Needed for Comfortable, Fast and Zero-Defect Process Execution? 3.3.3.6 Context: What Requirements Come from the Context? 3.3.3.7 Report: Canvas Summary and Short Business Case Analysis 3.3.4 Use Case Descriptions: Canvas Examples from Two Use Cases 3.3.4.1 Company A: Shipment Assembly 3.3.4.2 Company B: Assembly of a Smart Wallet Counter Display Model 3.4 Pilots on the Shop Floor 3.4.1 How Do We Set Up the Small-Scale Pilots? 3.4.2 Use Case Descriptions: Results from Two Shop Floor Pilots with Operator Support Technology 3.4.2.1 Company C: Precision Machining About The Pilot Results 3.4.2.2 Company D: Sheltered Workspace About The Pilot Results 3.4.3 Additional Examples: Two Short Test Descriptions 3.4.3.1 Company E: Various Operator Support Solutions in Maintenance of Sorting Systems 3.4.3.2 Company F: Manual Electronic Product Assembly Supported by Digital Work Instructions 3.5 Business Case Analysis 3.5.1 Quantifiable Costs and Benefits 3.5.2 Non-quantifiable Costs and Benefits 3.5.3 Use Case Descriptions: Was There a Business Case in Our Pilots? 3.5.3.1 Company G, Sheltered Workplace2: Moderate to Strong Business Case 3.5.3.2 Company H, Gearbox Assembly: Weak Business Case 3.5.3.3 Company I, Step-by-Step Remote Assistance: Strong Business Case 3.6 In Conclusion: Lessons Learnt and Future Developments? 3.6.1 Implementing Cognitive Operator Support 3.6.2 Our Methodology and Tools 3.6.2.1 OS-Canvas 3.6.2.2 Evaluating Usability 3.6.2.3 Business Case 3.6.3 Technology 3.6.4 Future Developments References 4: Human-Centered Adaptive Assistance Systems for the Shop Floor 4.1 Introduction 4.2 Human-Centered Adaptivity 4.2.1 Design Space for Adaptable Human-Centered Assistance 4.2.2 Dimensions of Adaptive Assistance 4.2.2.1 Goal of the Adaptation 4.3 Three Exemplary Scenarios for Adaptivity 4.3.1 Scenario 1 4.3.2 Scenario 2 4.3.3 Scenario 3 4.4 Building Blocks for Adaptive Assistance 4.4.1 Analysis of Existing Concepts and Implementations 4.4.2 The Reference Architecture 4.4.3 Knowledge Base 4.5 Algorithms for Adaptive Behavior 4.5.1 Rule-Based Approaches 4.5.2 Methods of Machine Learning 4.5.3 Suitable Adaptation Algorithms for the Scenarios 4.6 Summary and Conclusion References 5: Deep Learning-Based Action Detection for Continuous Quality Control in Interactive Assistance Systems 5.1 Introduction 5.2 Related Work 5.3 Concept 5.3.1 Overall Architecture 5.3.2 Assistance System 5.4 Dataset 5.5 Implementation 5.5.1 Hardware 5.5.2 Software 5.5.2.1 Machine Learning System 5.5.2.2 Model Generation 5.5.2.3 Assistance System 5.6 Evaluation 5.6.1 Method 5.6.2 Results 5.6.3 Discussion 5.7 Limitations 5.8 Conclusion and Future Work References 6: Advancements in Vocational Training Through Mobile Assistance Systems 6.1 Introduction 6.2 Integration of Assistance Systems into Basic Training 6.2.1 Embedding Complex Technical Systems 6.2.2 Agility 6.2.3 Inclusion of Different Levels of Education 6.2.4 Place and Time-Independent Learning 6.2.5 General Appeal of Vocational Training 6.3 State of the Art 6.4 Design and Implementation Concept 6.4.1 The AS Modules 6.4.2 Module 1: The Trainer Software 6.4.3 Module 2: The Management Platform 6.4.4 Module 3: Cloud Storage and Database 6.4.5 Module 4: The Trainee Software 6.4.6 Module 5: Training Insights 6.5 Case Studies 6.5.1 Study 1: Work 4.0 6.5.2 Study 2: Joint Apprentice Workshop 6.6 Conclusion and Outlook References 7: Designing User-Guidance for eXtendend Reality Interfaces in Industrial Environments 7.1 Introduction: Why Do We Need Guidance Techniques in XR? 7.2 Background 7.2.1 Mixing Realities: What Are AR, VR, MR, XR? 7.2.2 Specific Requirements of Industrial Applications 7.2.3 Guidance in XR: Why Arrows Are Not Enough 7.3 Related Work 7.3.1 Guidance Applications in XR 7.3.2 User Studies of Guidance Techniques 7.4 Approach 7.4.1 Design Processes and Process Integration 7.4.2 Design: Activities and Support 7.4.3 Support for Evaluation 7.5 Reflection and Future Work References 8: Lenssembly: Authoring Assembly Instructions in Augmented Reality Using Programming-by-Demonstration 8.1 Introduction 8.2 Contribution Statement 8.3 Related Work 8.3.1 Augmented Reality Supported Assembly Guidance 8.3.2 Assembly Authoring, Object, and Action Recognition 8.4 Lenssembly: An Assembly Authoring and Playback System 8.4.1 Authoring Mode: Expert Authoring and Recording Systems 8.4.2 Playback Mode: Trainee Replay and Learning System 8.5 Evaluation of Lenssembly Through a User Study 8.5.1 Assembly Tasks 8.5.2 Data Set Collection and Model Training 8.5.3 Methodology 8.5.4 Procedure 8.5.5 Participants 8.6 Results 8.6.1 Task Completion Time 8.6.2 Number of Errors and Task Load 8.6.3 Qualitative Results 8.7 Discussion 8.7.1 Lenssembly Requires More Time than Paper Instructions 8.7.2 Lenssembly Elicits Fewer Errors and Less Task Load 8.7.3 Recording Assembly Instructions 8.7.4 Limitations 8.7.5 Future Work 8.8 Conclusion References 9: Escaping the Holodeck: Designing Virtual Environments for Real Organizations 9.1 Introduction 9.2 Related Work 9.2.1 Immersive Environments in Manufacturing 9.2.2 Designing for Context of Use 9.2.3 Designing Immersive Environments for Organizations 9.3 Context and Research Methods 9.3.1 Customizing the VR Environment 9.3.2 Data Analysis and Procedures 9.4 Findings 9.4.1 Disrupting Workplace Norms 9.4.2 Conflicting Realities 9.4.3 Getting Lost in Translation 9.5 Discussion 9.5.1 Translating from 2D to 3D 9.5.2 Translating from 3D Back to 2D 9.6 Conclusion References 10: Gamification in Industrial Production: An Overview, Best Practices, and Design Recommendations 10.1 Introduction 10.2 The Background 10.2.1 The Production Domain 10.2.2 Gamification and Flow 10.2.3 Recognizing Emotions to Sustain Flow 10.3 Designing Gamification in Production from 2012 to 2021 10.3.1 First Steps Towards Gamified Production 10.3.2 Evaluating Design Variations and Branding 10.3.3 Exploring Feedback Modalities 10.4 Best Practices for Designing Gamification in Production 10.4.1 Designing a Neat Integration into the Workplace 10.4.2 Designing Branded Gamification for Specific Companies 10.4.3 Designing Gamified Agents for Specific User Groups 10.5 Design Recommendations References 11: New Industrial Work: Personalised Job Roles, Smooth Human-Machine Teamwork and Support for Well-Being at Work 11.1 Introduction 11.2 Related Work 11.2.1 Industry 4.0 from Workers´ Point of View 11.2.2 Well-Being at Work 11.2.3 Operator 4.0 Visions 11.2.4 Human-Centred Design of Industrial Systems 11.2.5 Research Gap 11.3 Surveys of Finnish Industry Workers 11.3.1 Industrial Work in EU and in Finland 11.3.2 Survey Methods 11.3.3 Many Decades of Experience 11.3.4 Investments in Human Capital 11.3.5 Attitudes and Expectations Are Mainly Positive 11.3.6 Work Safety and Well-Being 11.3.7 A Range of Individuals 11.4 A Vision of New Industrial Work: Personalised Job Roles, Smooth Human-Machine Teamwork and Support for Well-Being at Work 11.4.1 Operator 4.0 Skills Dimensions and Personalised Job Roles 11.4.2 Smooth Collaboration in Human-Machine Teams 11.4.3 Well-Being at the Centre 11.5 Recommendations for the Design of Factory Floor Solutions 11.6 Conclusions References 12: Which Factors Influence Laboratory Employees´ Acceptance of Laboratory 4.0 Systems? 12.1 Introduction 12.2 Literature Review 12.2.1 Laboratory 4.0 12.2.2 Smart Home 12.2.3 Commonalities and Differences Between Laboratory 4.0 and Smart Home 12.2.4 Exploratory Factor Analysis 12.2.5 Structural Equation Modeling 12.2.6 Technology Acceptance Model 12.3 Research Model and Hypothesis 12.3.1 TAM Factors 12.3.2 Personal Factors 12.4 Methodology 12.5 Results 12.5.1 Descriptive Analysis 12.5.2 Exploratory Factor Analysis 12.5.3 Reflective Measurement Model 12.5.4 Structural Model 12.5.5 Supplemental Analysis 12.6 Discussion 12.6.1 Hypotheses 12.6.2 Intention to Use 12.6.3 Attitude Toward Use 12.6.4 Usefulness and Ease of Use 12.6.5 Laboratory 4.0 and Smart Home 12.6.6 Trust and Perceived Risk 12.6.7 Supplemental Analysis 12.6.8 Limitations 12.7 Conclusion Appendices Appendix 1: Questionnaire Items Used in the Survey Appendix 2: Laboratory 4.0 Model Appendix 3: Discriminant Validity: Fornell-Larcker Criterion Appendix 4: Discriminant Validity: Outer Loadings/Cross-Loadings Appendix 5: Collinearity Statistics (VIF) Appendix 6: Influence Paths and Hypotheses Results Appendix 7: Total Effects References 13: Determinants of Trust in Smart Technologies 13.1 Introduction 13.2 Theoretical Background 13.2.1 Trust 13.2.2 Trust in Smart Technologies 13.3 Research Design 13.3.1 Data Access and Sample 13.3.2 Estimation Strategy 13.4 Results 13.5 Discussion 13.6 Conclusion References 14: Interfaces, Interactions, and Industry 4.0: A Framework for the User-Centered Design of Industrial User Interfaces in the ... 14.1 Introduction 14.2 Industrial User Interfaces in an Internet of Production 14.2.1 Challenges 14.2.2 Context of the Research 14.3 A Journey Through Different Industrial User Interfaces 14.3.1 AR-Based Feed-Forward to Improve CFRP Product Quality 14.3.2 Understanding Motives and Barriers to Human-Robot Collaboration 14.3.3 What Happens When Autonomous Agents Face Moral Judgements? 14.3.4 Understanding Information Processing When Handling Production Data 14.3.5 Studying Basic Supply Chain Phenomena 14.3.6 Supply Chains with Added Complexity: The Quality Management Game 14.4 Destination and Conclusion of Our Journey 14.4.1 The SIU Framework 14.4.2 Application of the Framework 14.5 Outlook and Future Journeys to Go References