دسترسی نامحدود
برای کاربرانی که ثبت نام کرده اند
برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید
در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید
برای کاربرانی که ثبت نام کرده اند
درصورت عدم همخوانی توضیحات با کتاب
از ساعت 7 صبح تا 10 شب
ویرایش:
نویسندگان: Luciana Amaral Haddad
سری:
ISBN (شابک) : 3030731502, 9783030731502
ناشر: Springer
سال نشر: 2021
تعداد صفحات: 367
زبان: English
فرمت فایل : PDF (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود)
حجم فایل: 8 مگابایت
در صورت ایرانی بودن نویسنده امکان دانلود وجود ندارد و مبلغ عودت داده خواهد شد
در صورت تبدیل فایل کتاب Human Genome Structure, Function and Clinical Considerations به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.
توجه داشته باشید کتاب ساختار ، عملکرد و ملاحظات بالینی ژنوم انسانی نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.
این کتاب یک مرور کلی مبتنی بر شواهد دقیق از آخرین پیشرفتها در مورد چگونگی ارتباط ساختار ژنوم انسان با متخصص سلامت ارائه میکند. این شامل بررسی جامع علم ژنوم از جمله ساختار کروموزومی و دیانای میتوکندری انسان، ژنهای کدکننده و غیرکدکننده پروتئین، و کلاسهای متنوع عناصر تکراری ژنوم انسان است. سپس این مفاهیم برای ارائه زمینه ای در مورد چگونگی ارتباط عملکردی آنها با تفاوت های صفات فنوتیپی که می توان در جمعیت های انسانی مشاهده کرد، ساخته می شوند. همچنین راهنمایی در مورد چگونگی استفاده از این اطلاعات توسط پزشک در عمل بالینی روزانه ارائه شده است. ساختار، عملکرد و ملاحظات بالینی ژنوم انسانی، آخرین پیشرفتها در علم ژنوم و روشهای کنونی برای تجزیه و تحلیل ژنوم را که برای پزشک، محقق و دانشمندی که از تکنیکهای پزشکی دقیق استفاده میکند، مرتبط است و منبعی ضروری برای هر پزشک است.
This book provides a detailed evidence-based overview of the latest developments in how the structure of the human genome is relevant to the health professional. It features comprehensive reviews of genome science including human chromosomal and mitochondrial DNA structure, protein-coding and noncoding genes, and the diverse classes of repeat elements of the human genome. These concepts are then built upon to provide context as to how they functionally relate to differences in phenotypic traits that can be observed in human populations. Guidance is also provided on how this information can be applied by the medical practitioner in day-to-day clinical practice. Human Genome Structure, Function and Clinical Considerations collates the latest developments in genome science and current methods for genome analysis that are relevant for the clinician, researcher and scientist who utilises precision medicine techniques and is an essential resource for any such practitioner.
Preface Contents Chapter 1: An Overview of the Human Genome 1.1 General Introduction 1.2 A Bird’s-Eye View of Selected Aspects of the Structure and Evolution of the Human Genome 1.2.1 Introduction 1.2.2 The Basic Morphological Division of the Human Genome: Chromosomes 1.2.3 Coding DNA and Non-coding DNA 1.2.4 Natural Selection and Genome Evolution 1.2.5 A Borgesian View of the Human Genome 1.3 Consequence of the Abundance of Retroposons, Retrotransposons and Endogenous Retrovirus in the Human Genome 1.4 Genomic Sequencing as a Clinical Tool for the Accurate Prediction of Disease Risk in Precision Medicine 1.4.1 What Is Precision Medicine? 1.4.2 New-Generation DNA Sequencing (NGS) 1.4.3 Pathogenic Mendelian Variants (“Monogenic”) 1.4.4 Cumulative Effect of Numerous Common Variants (“Polygenic”) References Chapter 2: Human Chromosomes 2.1 Introduction 2.2 DNA Replication 2.3 Chromatin 2.4 Chromosomes 2.5 Number and Morphology of Human Chromosomes 2.6 The Normal Karyotype 2.6.1 Autosomal Chromosomes 2.6.2 Sex Chromosomes 2.7 Chromosomes and Cell Division 2.8 Chromosome Abnormalities 2.8.1 Numerical Chromosome Abnormalities 2.8.1.1 Numerical Chromosomopaties Monosomy X Trisomy 21 Trisomy 18 Trisomy 13 Trisomy of Sex Chromosomes 2.8.1.2 Poliploydy and Molar Pregnancies 2.8.2 Structural Chromosome Abnormalities 2.8.2.1 Deletion 2.8.2.2 Duplication 2.8.2.3 Translocation 2.8.2.4 Reciprocal Translocations 2.8.2.5 Robertsonian Translocations 2.8.2.6 Isochromosomes 2.8.2.7 Inversions 2.9 Some Considerations about Chromosome Abnormalities 2.10 Genomic Disorders 2.11 Methods for the Study of Chromosomes 2.11.1 Karyotype 2.11.2 FISH Test 2.11.3 Chromosome Microarray 2.11.4 Whole-Genome Sequencing 2.12 Cytogenomic Nomenclature 2.13 Final Remarks References Chapter 3: Methods to Study Genomic DNA Sequence Variation 3.1 Introduction 3.2 Variant Categories 3.3 Methods in Genomic Analyses 3.3.1 Fragment-Based Methods 3.3.1.1 Fluorescence In-Situ Hybridization (FISH) 3.3.1.2 Array Comparative Genomic Hybridization (Array-CGH or aCGH) 3.3.1.3 Multiplex Ligation-Dependent Probe Amplification (MLPA) 3.3.1.4 Triplet Repeat Primed PCR (TP-PCR) 3.3.2 Sequence-Based Methods 3.3.2.1 Sanger Sequencing 3.3.2.2 Genotyping Microarrays 3.3.2.3 Next-Generation Sequencing 3.4 Analysis of Rare and Common Variants to Understand Diseases and Traits 3.4.1 Workflow for Molecular Diagnosis 3.4.2 Rare-Variant Association Testing 3.4.3 Polygenic Risk Scores 3.5 Perspectives 3.5.1 Cell-Free DNA 3.5.2 Long-Read Sequencing 3.5.3 Omics Integration References Chapter 4: Protein-Coding Genes 4.1 Introduction 4.2 Linear and Structural Elements Controlling Transcription and Primary Transcript Processing 4.2.1 Gene Transcription-Regulating cis Elements 4.2.1.1 The POLII Promoter 4.2.1.2 Transcription Regulatory Elements 4.2.2 Chromatin Remodeling 4.2.2.1 Cytosine Methylation 4.2.2.2 Histone isoforms and Post-Translational Modifications 4.2.2.3 Insulators, Locus Control Regions and Enhancer Blocking 4.2.3 The TP53 Gene: A Genetic Case Study on Promoters and Enhancers 4.2.3.1 Trans-Acting p53 effects on Gene Transcription 4.2.3.2 TP53 Gene Transcription 4.2.3.3 Germline and Somatic TP53 Pathogenic DNA Variants 4.2.4 Gene Elements Driving the Primary Transcript Processing 4.2.4.1 Exons 4.2.4.2 Introns and Splicing 4.2.4.3 The SMN1 and SMN2 Genes: A Genetic Case Study on Splicing 4.2.4.4 Polyadenylation Signal: A cis Element on Transcript’s Last Exon 4.2.5 The ENCODE Project 4.3 Protein-Coding Gene Families 4.3.1 Pseudogenes 4.3.2 Protein Domains as Evolutionary Modules 4.3.3 Developmental Expression of the Human Beta-Globin Locus Genes 4.4 DNA Variants May Occur de novo or Be Inherited 4.5 Genomic imprinting and Non-classic Mendelian Inheritance 4.6 Final Remarks: The Evolving Concept of Protein-Coding Genes References Chapter 5: Noncoding Gene Families of the Human Genome 5.1 Noncoding Genes: Finding Treasure in Junk 5.2 RNA: A Versatile Molecule 5.3 Noncoding Gene Families 5.3.1 Housekeeping ncRNAs 5.3.2 Small Noncoding RNAs 5.3.3 Long Noncoding RNAs 5.4 Clinical Relevance of ncRNAs 5.5 Challenges and Open Questions in the Noncoding RNA Field References Chapter 6: Satellite and Tandem DNA Repeats in the Human Genome 6.1 Introduction 6.2 Satellite DNA 6.3 Tandem DNA Repeats 6.3.1 Microsatellite DNA (STR) 6.4 Dynamic Mutations: Expansion of Transcribed, Unstable Tandem Repeats 6.4.1 5′UTR CGG/GCC Repeats and Rare Chromosomal Fragile Sites 6.4.1.1 One Family, Three Generations, Three Distinct Clinical Conditions 6.4.1.2 Genetic Pathophysiology of FMR1 Premutation 6.4.2 3′UTR CTG repeats and Type 1 Myotonic Dystrophy 6.4.3 Translated CAG Repeats 6.4.4 Expansion of Intronic Tri-, Tetra-, Penta- and Hexanucleotide Repeats 6.5 Final Remarks References Chapter 7: Human Chromosome Telomeres 7.1 Introduction 7.2 History 7.3 Human Telomeres: Maintenance for Genome Stability and Cell Proliferation 7.3.1 Telomeres and Their Structural Features 7.3.2 The Importance of Telomeres’ Replication for Genome Stability and Integrity 7.3.2.1 The Telomerase Ribonucleoprotein Complex 7.3.2.2 Elongation of Telomeres by Telomerase 7.3.2.3 Alternative Lengthening of Telomeres 7.3.3 Telomere Length Regulation 7.3.3.1 The Intercrossed Actions Between Shelterin and the CST Complex 7.3.3.2 Telomere Transcription and the Importance of Terra in Telomere Maintenance 7.4 Telomeres and Biological Age 7.4.1 Environmental Determinants of Telomere Shortening 7.4.2 Intrinsic Factors for Telomere Shortening 7.5 Telomere Dysfunction in Human Diseases 7.6 Telomeres as Targets for Disease Management 7.6.1 Telomerase Inhibition in Cancer 7.6.2 Senescent Cells and Senolytic Drugs 7.7 Conclusions and Future Directions References Chapter 8: To Build or To Break: The Dual Impact of Interspersed Transposable Elements in Cancer 8.1 Transposable Elements Diversity 8.2 Transposable Elements’ Regulation 8.3 Beneficial Impacts of Transposable Elements 8.4 Deleterious Impacts of Transposable Elements 8.5 Transposable Elements and Cancer 8.6 Transposable Elements Activation and Cancer Treatment 8.7 The Use of Transposable Elements as Tools in Precision Medicine 8.8 Concluding Remarks Bibliography Chapter 9: Copy Number Variation in the Human Genome 9.1 Copy Number Variation: A Brief Description and Overview of its Impacts and Mechanisms of Origin 9.2 CNVs Are Major Contributors to Phenotypic Variation in the Human Genome 9.3 Analysis of Copy Number Variants 9.3.1 G-Band Karyotyping 9.3.2 Fluorescence In Situ Hybridization (FISH) 9.3.3 Multiplex Ligation-Dependent Probe Analysis (MLPA) 9.3.4 Polymerase Chain Reaction (PCR) 9.3.5 Hybridization-Based Microarray Approaches 9.3.6 Next-Generation Sequencing (NGS) 9.4 CNVs and Human Diseases 9.4.1 CNVs and Neurological Diseases: The PMP22 Gene as an Example 9.4.2 CNVs and Cancer 9.4.3 CNVs and Malformative Syndromes 9.4.4 CNVs and Neurodevelopmental Disorders 9.5 Clinical Application of CNV Study in Human Disease 9.5.1 Clinical Case 1 9.5.2 Clinical Case 2 9.5.3 Clinical Case 3 9.6 Closing Remarks References Chapter 10: The Human Mitochondrial DNA 10.1 The Origin and the Structure of the Human Mitochondrial DNA (mtDNA) 10.2 The Mutation Rates in mtDNA are Elevated When Compared to Nuclear DNA 10.3 Rare mtDNA Variants Lead to Hereditary Diseases with Maternal Transmission 10.4 Heteroplasmy Is a Generalized Phenomenon in mtDNA Inheritance and Relates to the Clinical Expression of Diseases 10.5 Human mtDNA Is Maternally Transmitted, But Striking Exceptions Have Been Described 10.6 Frequent mtDNA Variants Define Haplogroups Correlated to the Geographical Patterns of Dispersion of Modern Humans 10.7 Frequent mtDNA Variants Correlate with Increased Susceptibility to Complex Disorders 10.8 Somatic Variation Accumulated in the mtDNA is Related to Aging and Diseases 10.9 mtDNA Disorders 10.10 mtDNA is Related to Inflammation and Immunity 10.11 mtDNA and Epigenetics References Chapter 11: Population Variation of the Human Genome 11.1 What Is Genomic Variation? 11.2 An Evolutionary Perspective on Human Diversity 11.3 Archaic Hominin Introgression as an Unexpected Source of Variation 11.4 The Origin and Diversity of Indigenous Populations in Pre-Columbian Times 11.5 Genomic Variation of Contemporaneous Human Societies 11.6 Variation in Simple and Complex Phenotypes and Inherited Diseases 11.7 Variation and Rare Genetic Diseases 11.8 Human Variation in the Prognosis of Pathogenic Diseases 11.9 Human Variation in the Immune Response 11.10 Epigenetic Variation References Index