دسترسی نامحدود
برای کاربرانی که ثبت نام کرده اند
برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید
در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید
برای کاربرانی که ثبت نام کرده اند
درصورت عدم همخوانی توضیحات با کتاب
از ساعت 7 صبح تا 10 شب
ویرایش: 1
نویسندگان: Olivier Terzo (editor). Jan Martinovic (editor)
سری:
ISBN (شابک) : 1032009845, 9781032009841
ناشر: CRC Press
سال نشر: 2021
تعداد صفحات: 323
زبان: English
فرمت فایل : PDF (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود)
حجم فایل: 35 مگابایت
در صورت تبدیل فایل کتاب HPC, Big Data, AI Convergence Towards Exascale: Challenge and Vision به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.
توجه داشته باشید کتاب HPC، کلان داده، همگرایی هوش مصنوعی به سوی Exascale: چالش و چشم انداز نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.
HPC، Big Data، AI Convergence Towards Exascale چشم انداز به روز شده ای را در مورد پیشرفته ترین فناوری های محاسباتی، ذخیره سازی و اتصال متقابل ارائه می دهد که بر اساس همگرایی میان حوزه های HPC، Cloud، Big Data و هوش مصنوعی (AI) است. . این کتاب از طریق ارائه راهحلهای ابداعشده در پروژههای اروپایی H2020 که اخیراً تأسیس شدهاند، بینشی در مورد چالشهای پیش روی ادغام چنین فناوریهایی و در دستیابی به اهداف عملکرد و بهرهوری انرژی در سطح مقیاس بزرگ ارائه میکند. تأکید بر روشهای نوآورانه تأمین و مدیریت منابع و همچنین نظارت بر استفاده از آنها است. موارد استفاده صنعتی و علمی مثالهای عملی از نیازهای همگرایی بین دامنهای را در اختیار خواننده قرار میدهد.
همه فصلهای این کتاب، زمینه را فراهم میکنند. راه رسیدن به نسل جدید فناوری ها، از توسعه آنها حمایت کرده و علاوه بر آن، آنها را در مشکلات دنیای واقعی تأیید کنید. خوانندگان این کتاب را مفید می یابند زیرا نمای کلی از فناوری های موجود در حال حاضر را ارائه می دهد که با مفهوم برنامه های یکپارچه Cloud-HPC-Big Data-AI مطابقت دارد و نمونه هایی از استفاده واقعی آنها را در برنامه های علمی و صنعتی ارائه می دهد.
HPC, Big Data, AI Convergence Towards Exascale provides an updated vision on the most advanced computing, storage, and interconnection technologies, that are at basis of convergence among the HPC, Cloud, Big Data, and artificial intelligence (AI) domains. Through the presentation of the solutions devised within recently founded H2020 European projects, this book provides an insight on challenges faced by integrating such technologies and in achieving performance and energy efficiency targets towards the exascale level. Emphasis is given to innovative ways of provisioning and managing resources, as well as monitoring their usage. Industrial and scientific use cases give to the reader practical examples of the needs for a cross-domain convergence.
All the chapters in this book pave the road to new generation of technologies, support their development and, in addition, verify them on real-world problems. The readers will find this book useful because it provides an overview of currently available technologies that fit with the concept of unified Cloud-HPC-Big Data-AI applications and presents examples of their actual use in scientific and industrial applications.
Cover Half Title Title Page Copyright Page Table of Contents Foreword Foreword Preface Preface Acknowledgments Editors Contributors 1 Toward the Convergence of High-Performance Computing, Cloud, and Big Data Domains 1.1 Introduction 1.1.1 History of Cloud Computing 1.1.2 History of HPC 1.1.3 Evolution of Big Data 1.1.4 Evolution of Big Data Storage and Tools 1.2 Exploiting Convergence 1.2.1 CYBELE Project 1.2.2 DeepHealth Project 1.2.3 EVOLVE Project 1.2.4 LEXIS Project Acknowledgment References 2 The LEXIS Platform for Distributed Workflow Execution and Data Management 2.1 Motivation 2.2 Architecture (Codesign) and Interfaces 2.3 Security 2.4 Accounting and Billing 2.5 Easy Access to HPC/Cloud Through a Specialized Web Portal 2.6 Market Analysis 2.6.1 LEXIS Project Impact Acknowledgment References 3 Enabling the HPC and Artificial Intelligence Cross-Stack Convergence at the Exascale Level 3.1 Introduction 3.2 The Rise of Convergent Infrastructures 3.3 The ACROSS Approach to the HPC, Big Data, and AI Convergence 3.3.1 Heterogeneous Infrastructural Support 3.3.2 The Management of the Convergent Platform 3.4 Related Works 3.5 Conclusions Acknowledgment Notes Bibliography 4 Data System and Data Management in a Federation of HPC/Cloud Centers 4.1 Introduction: Data Federation of European HPC/Cloud Centers 4.2 Requirements On the LEXIS DDI 4.2.1 Unified Data Access 4.2.2 Usage and Federation of Diverse Data Backend Systems 4.2.3 Reliability and Redundancy 4.2.4 AAI Support 4.2.5 APIs 4.2.6 State-Of-The-Art Research Data Management 4.3 Federation Via a DDI Based On IRODS 4.3.1 Relevant Basic Properties of IRODS 4.3.2 IRODS HA Setup 4.3.3 IRODS Zones Federation Across Centers and Data Movement 4.3.4 Storage Tiering and Underlying Data Storage 4.3.5 Logical Structure of the DDI 4.4 Hardware 4.4.1 Storage Systems for HPC and Infrastructure-As-A-Service- Cloud Clusters 4.4.2 Storage Systems Dedicated to LEXIS 4.4.3 HPC–Cloud-Storage Interconnect and Data Node/Burst Buffer Concept 4.4.3.1 SBF (Smart Bunch of Flash) 4.4.3.2 SBB 4.5 Unified Access to the Platform Based On an AAI 4.5.1 LEXIS Identity and Access Management (IAM) Solution, SSO, and AAI 4.5.2 Platform Services Vs. AAI: Separation of Concerns 4.5.3 LEXIS DDI and IAM/AAI System 4.6 Data Management Via APIs 4.6.1 Data Search, Upload, and Download APIs 4.6.2 Staging API 4.6.3 Replication and PID Assignment API 4.6.4 Helper APIs 4.6.5 Compression/Decompression/Encryption/Decryption API 4.7 Integration With EUDAT Services 4.7.1 EUDAT B2HANDLE 4.7.2 EUDAT B2SAFE 4.7.3 EUDAT B2STAGE 4.8 Conclusion Acknowledgment References 5 Distributed HPC Resources Orchestration for Supporting Large-Scale Workflow Execution 5.1 Introduction 5.2 Federated Execution Platforms 5.3 WMSs and Implementation in LEXIS 5.3.1 Dynamic Workflow Orchestration 5.3.2 Resource Management Metrics 5.4 Workflow Data Management 5.5 LEXIS Pilot Use Cases and Orchestration 5.6 Related Works 5.7 Conclusion Acknowledgment Notes Bibliography 6 Advanced Engineering Platform Supporting CFD Simulations of Aeronautical Engine Critical Parts 6.1 Introduction: Background and LEXIS Aeronautics Pilot 6.2 Engineering Case Studies in the LEXIS Aeronautics Pilot 6.3 The Turbomachinery Case Study 6.3.1 Engineering Context 6.3.2 Digital Technology Deployment 6.3.2.1 Application Workflow 6.3.2.2 Main Application Software and HW Resources 6.3.3 First Results 6.3.4 Benefit–Cost Analysis of HW Acceleration 6.3.5 Next Steps 6.4 The Rotating Parts Case Study 6.4.1 Engineering Context 6.4.2 Digital Technology Deployment 6.4.2.1 Application Workflow 6.4.2.2 Main Application Software and HW Resources 6.4.3 First Results 6.4.3.1 SPH Liquid-Phase Simulation 6.4.3.2 SPH Gas-Phase Simulation 6.4.4 Next Steps 6.5 Final Remarks Acknowledgment Notes References 7 Event-Driven, Time-Constrained Workflows: An Earthquake and Tsunami Pilot 7.1 Introduction 7.2 Event-Driven, Time-Constrained Workflows 7.2.1 Requirements 7.2.2 Background 7.2.3 Overall View of the Workflow 7.3 Workflow Components 7.3.1 Shakemap and Exposure Dataset 7.3.2 Tsunami Simulations 7.3.3 SEM 7.4 Technological Layers 7.4.1 Technology Layer 1: Orchestration 7.4.2 Technology Layer 2: Heterogeneous Compute 7.4.3 Technology Layer 3: Data 7.5 Conclusion Note References 8 Exploitation of Multiple Model Layers Within LEXIS Weather and Climate Pilot: An HPC-Based Approach 8.1 Introduction: Background and Driving Forces 8.2 The Weather and Climate Pilot 8.3 Observational Data 8.4 LEXIS DDI and Weather and Climate Data API 8.5 LEXIS Orchestration System 8.6 Weather and Climate Pilot Workflows 8.6.1 WRF–ERDS Workflow Examples 8.7 Conclusion Acknowledgment References 9 Data Convergence for High-Performance Cloud 9.1 Introduction 9.2 Motivations 9.3 Design and Implementation 9.4 Karvdash 9.5 DataShim 9.5.1 Overview 9.5.2 Dataset Custom Resource Definition 9.5.3 DatasetInternal Custom Resource Definition 9.5.4 DataShim Operator and Admission Controller 9.5.5 Caching Plugin 9.5.6 Objects Caching On CEPH 9.5.7 Ceph-Based Caching Plugin Implementation 9.5.8 Evaluation of the Ceph-Based Caching Plugin 9.6 H3 9.6.1 Overview 9.6.2 Data and Metadata Organization 9.6.3 The H3 Ecosystem 9.7 Integration 9.8 Related Work 9.9 Conclusions Note References 10 The DeepHealth HPC Infrastructure: Leveraging Heterogenous HPC and Cloud-Computing Infrastructures for IA-Based Medical Solutions 10.1 Introduction 10.2 The Parallel Execution of EDDL Operations 10.2.1 COMPSs 10.2.2 StreamFlow 10.3 Cloud Infrastructures 10.3.1 Hybrid Cloud 10.3.2 Parallel Execution On Cloud Environments 10.3.2.1 Parallel Cloud Execution Based On COMPSs 10.3.2.2 Parallel Cloud Execution Based On StreamFlow 10.4 Acceleration Devices: GPU and FPGAs 10.4.1 FPGA Acceleration 10.4.1.1 The DeepHealth FPGA Infrastructure 10.4.1.2 An Optimized FPGA Board Design for DL 10.4.1.3 FPGA-Based Algorithms 10.4.2 Many Core and GPU Acceleration 10.5 Conclusions Notes 11 Applications of AI and HPC in the Health Domain 11.1 Introduction 11.2 AI and HPC in the Health Domain in 2020 11.3 DeepHealth Concept 11.4 DeepHealth Use Cases 11.5 Use of HPC and Cloud in Medical Pilots 11.5.1 UC2 – UNITOPatho 11.5.2 UC3 – UNITOBrain 11.5.3 UC4 – Chest 11.5.4 UC5 – UNITO Deep Image Annotation 11.5.5 UC12 – Skin Cancer Melanoma Detection 11.6 DeepHealth Value Proposition 11.7 Conclusions Notes 12 CYBELE: On the Convergence of HPC, Big Data Services, and AI Technologies 12.1 Introduction: Background and Driving Forces 12.2 Identified Gaps: Motivating the CYBELE Vision 12.3 Materializing the Solution: Convergence of HPC, Big Data, and AI 12.3.1 Data and Infrastructure Access Security Layer 12.3.2 Embedded Experiments Composition Layer 12.3.3 Parallel and Distributed Execution Management Layer 12.3.4 Data Services Layer 12.3.5 Visualization and Reporting Layer 12.4 Key Takeaways and Conclusions Note References 13 CYBELE: A Hybrid Architecture of HPC and Big Data for AI Applications in Agriculture 13.1 Introduction: Vision and Challenges 13.2 Background 13.2.1 AI in Big Data Analytics On Cloud 13.2.2 AI On HPC Systems 13.3 Hybrid Big Data and HPC Resource for AI Applications in CYBELE 13.4 Parallelization and Deployment of AI Applications On HPC Systems 13.4.1 Pilot Soybean Farming 13.4.1.1 Pilot Description 13.4.1.2 Application Parallelization for HPC Systems 13.4.2 Pilot Wheat Ear 13.4.2.1 Pilot Description 13.4.2.2 Application Parallelization for HPC Systems 13.5 Performance Evaluation for Pilot Soybean Farming and Pilot Wheat Ear 13.6 Discussion 13.7 Conclusion Remarks and Future Works Acknowledgments Notes References 14 European Processor Initiative: Europe’s Approach to Exascale Computing 14.1 Introduction 14.2 European Processor Initiative 14.2.1 Global Technical Panstream 14.2.2 GPP Stream 14.2.3 Accelerator Stream 14.2.4 Automotive Stream 14.3 Conclusion Acknowledgment This Work Has Received Funding From the European Union’s Horizon 2020 Research and Innovation Programme “European Processor Initiative (EPI)” Under Grant Agreement No 826647. Bibliography Index